
120 Computer

T he rise and fall of the dot-
com-driven Internet economy
shouldn’t distract us from see-
ing that the business environ-
ment continues to change at a

dramatically increasing pace. To thrive
in this turbulent environment, we must
confront the business need for relentless
innovation and forge the future work-
force culture. Agile software develop-
ment approaches such as Extreme Pro-
gramming, Crystal methods, Lean
Development, Scrum, Adaptive Software
Development (ASD), and others view
change from a perspective that mirrors
today’s turbulent business and technol-
ogy environment.

THE PROBLEM
In a recent study of more than 200

software development projects, QSM
Associates’ Michael Mah reported that
the researchers couldn’t find nearly half
of the projects’ original plans to measure
against. Why? Conforming to plan was
no longer the primary goal; instead, sat-
isfying customers—at the time of deliv-
ery, not at project initiation—took
precedence. In many projects we review,
major changes in the requirements,
scope, and technology that are outside
the development team’s control often
occur within a project’s life span.

Accepting that Barry Boehm’s life cycle
cost differentials theory—the cost of

change grows through the software’s
development life cycle—remains valid,
the question today is not how to stop
change early in a project but how to bet-
ter handle inevitable changes throughout
its life cycle.

Traditional approaches assumed that if
we just tried hard enough, we could antic-
ipate the complete set of requirements
early and reduce cost by eliminating
change. Today, eliminating change early
means being unresponsive to business con-
ditions—in other words, business failure.

Similarly, traditional process manage-
ment—by continuous measurement,
error identification, and process refine-
ments—strove to drive variations out of
processes. This approach assumes that
variations are the result of errors. Today,
while process problems certainly cause
some errors, external environmental
changes cause critical variations. Because
we cannot eliminate these changes, dri-
ving down the cost of responding to

them is the only viable strategy. Rather
than eliminating rework, the new strat-
egy is to reduce its cost.

However, in not just accommodating
change, but embracing it, we also must
be careful to retain quality. Expectations
have grown over the years. The market
demands and expects innovative, high-
quality software that meets its needs—
and soon.

THE AGILE RESPONSE
Agile methods are a response to this

expectation. Their strategy is to reduce the
cost of change throughout a project.
Extreme Programming (XP), for example,
calls for the software development team to

• produce the first delivery in weeks,
to achieve an early win and rapid
feedback;

• invent simple solutions, so there is
less to change and making those
changes is easier;

• improve design quality continually,
making the next story less costly to
implement; and

• test constantly, for earlier, less
expensive, defect detection.

Agile software development stresses
quality in design. These methods are some-
times confused with ad hoc or cowboy
coding because the design is done on an
ongoing basis, in smaller chunks, as
opposed to all at once and up front. Each
agile method addresses quality in certain
ways. For example, Dynamic Systems
Development Methodology (DSDM) calls
for a series of prototypes to attack unsta-
ble or unknown areas: new technology,
new business rules, and user interface
design. Scrum uses intense 15-minute daily
meetings and comprehensive iteration
reviews at the end of each 30-day iteration.

Agile Software
Development:
The Business of
Innovation
Jim Highsmith, Cutter Consortium
Alistair Cockburn, Humans and Technology

S O F T W A R E M A N A G E M E N T

Agile development combines
creative teamwork with an
intense focus on effectiveness
and maneuverability.

Basic principles
Agile methods stress two concepts: the

unforgiving honesty of working code and
the effectiveness of people working
together with goodwill.

Working code tells the developers and
sponsors what they really have in front
of them—as opposed to promises as to
what they will have in front of them. The
working code can be shipped, modified,
or scrapped, but it is always real.

Using people effectively achieves
maneuverability, speed, and cost savings.
People can transfer ideas faster by talking
face to face than by writing and reading
documents. A few designers sitting
together can produce a better design than
each could produce alone. When devel-
opers talk with customers and sponsors,
they can iron out difficulties, adjust pri-
orities, and examine alternate paths for-
ward in ways not possible when they are
not working together.

Agile Software Manifesto
In recognition of these ideas, in Febru-

ary 2001, we joined 15 other people rep-
resenting XP, Scrum, DSDM, ASD,
Crystal, Feature-Driven Development,
pragmatic programming, and others
sympathetic to the need for alternative
software development methods in sign-
ing the Manifesto for Agile Software
Development. We wrote:

We are uncovering better ways of
developing software by doing it and
helping others do it. Through this
work we have come to value

• individuals and interactions over
processes and tools,

• working software over comprehen-
sive documentation,

• customer collaboration over
contract negotiation,

• responding to change over follow-
ing a plan.

That is, while there is value in the items
on the right, we value the items on the
left more.

Processes, tools, documentation, contracts,
and plans are useful. But when push comes
to shove—and it usually does—something

must give, and we need to be clear about
what stays and what gives.

Relying on interactions between indi-
viduals facilitates sharing information
and changing the process quickly when it
needs changing. Using working software
allows us to measure how fast we actu-
ally produce results and provides quick
feedback. Frequent interaction between
individuals compensates for minimizing
documentation.

Customer collaboration means that
all players—the sponsor, customer, user,
and developer—are on the same team.
Merging their different experiences and
expertise with goodwill allows the com-
bined group to change directions
quickly so they can produce more
appropriate results and less expensive
designs. Contracts or project charters
with the customers are necessary, but
without collaboration, they are insuffi-
cient.

Working through producing a plan
drives the team members to think
through their project and its contingen-
cies. The plan itself usually goes out of
date within just a few days. Afterward,
rather than focusing on the outdated
plan, it is important to deal with the
changing realities.

GENERATIVE RULES
One aspect of agile development is

often missed or glossed over: a world
view that organizations are complex
adaptive systems. A complex adaptive
system is one in which decentralized,
independent individuals interact in self-
organizing ways, guided by a set of sim-
ple, generative rules, to create inno-
vative, emergent results. XP’s 12 prac-
tices, for example, were never intended
to be all-inclusive rules; instead, they are
generative rules that interact in concert

when a team of individuals practices
them.

Most methodologies provide inclusive
rules—all the things you could possibly
do under all situations. Agile methods
offer generative rules—a minimum set of
things you must do under all situations to
generate appropriate practices for special
situations. Teams that follow inclusive
rules depend on someone else to name in
advance the practices and conditions for
every situation. This obviously breaks
down quickly. A team that follows gen-
erative rules depends on individuals and
their creativity to find ways to solve prob-
lems as they arise. Creativity, not volu-
minous written rules, is the only way to
manage complex software development
problems and diverse situations.

AGILE PRACTICES
A team isn’t agile if the feedback loop

with customers and management is six
months. Agile approaches recommend
short iterations in the two- to six-week
range during which the team makes con-
stant trade-off decisions and adjusts to
new information. XP and Scrum have
more directed cycles—two to three weeks
for XP, 30 days for Scrum; other meth-
ods such as Crystal and ASD tolerate
more variation.

Feature planning and
dynamic prioritization

Agile approaches combine these short
iterative cycles with feature planning and
dynamic prioritization. XP uses story
cards; Scrum uses the term “backlog”;
ASD and Feature-Driven Development
refer to features. The key point is that
agile approaches plan features, not tasks,
as the first priority because features are
what customers understand.

Dynamic prioritization means that at
the end of an iteration, the customer can
reprioritize the features desired in the
next cycle, discarding originally planned
features and adding new ones. Scrum
explicitly states that priorities can only
change at the end of an iteration, not dur-
ing one. DSDM uses “MoSCoW” rules
for features—Must have, Should have,
Could have, Want to have sometime.
XP’s priority scheme is binary—in this
cycle, or not.

September 2001 121

In a complex adaptive
system, decentralized,
independent individuals

interact to create
innovative, emergent

results.

122 Computer

Agility is dynamic, context-specific,
aggressively change embracing, and
growth-oriented. It is not about improv-
ing efficiency, cutting costs, or batten-
ing down the business hatches to ride
out fearsome competitive “storms.” It is
about succeeding and about winning:
about succeeding in emerging compet-
itive arenas, and about winning profits,
market share, and customers in the very
center of the competitive storms many
companies now fear.

This book was about manufacturing, but
the definition of agility applies equally to
today’s software development environ-
ment.

Agility, ultimately, is about creating
and responding to change. What is new
about agile methods is not the practices
they use, but their recognition of people
as the primary drivers of project success,
coupled with an intense focus on effec-
tiveness and maneuverability. This yields
a new combination of values and princi-
ples that define an “agile” world view.

Agile software development addresses
two pressures that characterize today’s
business and technology world: the need
for dynamic, innovative approaches and
the desire to build workplaces that aren’t
described in Dilbert cartoons. ✸

Jim Highsmith is director of Cutter Con-
sortium’s e-Project Management Prac-
tice. Contact him at jimh@adaptivesd.
com.

Alistair Cockburn is a Consulting Fellow
at Humans and Technology. Contact him
at arc@acm.org.

Feedback and change
Because they are most applicable to tur-

bulent, high-change environments, agile
approaches recommend a variety of prac-
tices for constant feedback on technical
decisions, customer requirements, and
management constraints. XP advocates
pair programming for feedback, and
DSDM features short-cycle user proto-
typing. Crystal and ASD advocate end-of-
iteration process and team reviews. ASD
and Scrum use end-of-iteration reviews
with customer focus groups.

Agile practices encourage change
rather than discourage it. In turbulent
business situations, a methodology’s
change tolerance must be geared to the
change rate of a specific environment, not
some internal view of how much change
is acceptable. For example, changes to
feature priorities and requirements are
handled within the context of a team and
the customer partners unless the changes
violate the broad scope, schedule, and
cost constraints set by the purchasing
customer (or management).

Focus on teamwork
Team proximity and intense interac-

tion between team members are hall-
marks of all agile methods. XP is noted
for pair programming, although the prac-
tice has been around for years under
other names. Crystal, Scrum, and ASD
advocate close collaboration practices
including barrier-free collocated teams.
Lean Development stresses team interac-
tion.

Using agile development methods
requires close customer partnerships. If
the customers, either internal department
representatives or marketing product
managers, don’t have a good sense of
direction and wander around in strange
patterns, agile developers will follow
them (with occasional admonitions, of
course). Poor customers result in poor
systems.

I n 1995, Steven L. Goldman, Roger N.
Nagel, and Kenneth Preiss, the
authors of Agile Competitors and

Virtual Organizations (Van Nostrand
Reinhold, New York), offered this defin-
ition of agility:

S o f t w a r e M a n a g e m e n t

Editor: Barry Boehm, Computer Science
Department, University of Southern Califor-
nia, Los Angeles, CA 90089; boehm@
sunset.usc.edu

Next-
generation
courses
for the

next

generation

of computer

professionals

Influence what our

students learn.

Review the latest draft of

Computing Curricula 2001.

http://computer.org/

education/curricula2001

Prepared by the

IEEE Computer Society/

ACM joint task force on

Computing Curricula 2001

