RobertL. Glass

The Loyal O

Reuse: wnarswrung
Wwith This Picture?

& omething is seriously wrong with reuse.

® 9 if there is a motherpie-and-applehood

topicin software engineering, reuse is it.

Everyone believes in it; everyone thinks

we should be doing more of it. So do |. Reuse does

have the potential ourindustry attributes to it. But the

guestion that keeps sticking in my mind is this: “Why
hasn't that potential already been achieved?”

Most software engineering literature points the
finger at management. Don Reifer, for example, has
conducted lots of industrial-strength studies of busi-
nesses that practice reuse (see, for example, Practical
Software Reuse, John Wiley & Sons, 1997), and to him
the conclusion is clear: the companies that succeed
at reuse do so because of managerial commitment,

*'while the ones that fail lack such commitment.
Several others say much the same thing. Ruben
Prieto-Diaz turns the problem around and asserts
that companies that fail at reuse do so because they
treat it as a technical problem,

| disagree. It seems to me that reuse’s funda-
mental problem is clearly not a lack of managerial

0740-7459/98/$10.00 © 1998 IEEE

o]e osmon
21

commitment. Based on my own experiences, | think
reuse hasn't succeeded to the extent we would like
because there aren't that many software compo-
nents that can be reused.

UsgeruL vs. REUSEFUL

Reuse has been a career-long interest of mine.
From my earliest days in the software field in the
1950s, | have sought to construct and institutional-
ize reusable components at the enterprises for
which | worked. Back in the 1950s, reuse was a thriv-
ing idea—user organizations like Share constructed
and maintained what | then called the Software
Parts Catalogs—lists of basically reusable software
components. The applications of the time were
small by today’s standards and so were those
reusable components, Nevertheless, reuse thrived—
you didn't think of writing a new application without
first looking in the Share catalog to see how much of
your product-to-be could be brought in off the shelf.

March/April 1998 fg- |EEE Software

Head 1o Head

>
e
Q
3]
[y
.8
T
£
®
[
%)
£
2
.
2]
©
g
=
[=)]
c
=
=3
o
E
o
o
.
vy
v
i
O
-
-
ju.
[
2
[=]
oc

EDITOR

57

Head 1o Head

58

Timepassed and the extent of component reuse
failed to grow. Why? .

Several things happened. First and most impor-
tantly, the field of reusable components had been
pretty well plowed out. My reuse-focused comrades
and | struggled to identify
program pieces that could
be built and reused to the
extent those early compo-
nents were, Each software
program, at a detail coding
level, was different—which
is why we kept building all

‘that new software. Once we stepped beyond the

fairly. small, implementation-focused components
(the'ones you now learn about in computer science
courses) and into the world of larger, application-fo-
cused components (the ones computer science
courses don'tsay much about unless the application
domain:interests the instructor), that which was

worth generalizing became increasingly elusive. |

built what | thought were reusable components, only
to find that the needs of any specific and real appli-
cation differed enough from what I'd done:to make
my product useless—or at least reuseless.

SPEED AND QUANTITY VS,
QUALITY AND REUSABILITY

Developments.in the business of making soft- .

ware placed further obstacles in the way of effec-
tive reuse. As it matured, our field' moved from an
erawhen getting a good product out the door mat-
tered most to an era when meeting a sometimes ar-
bitrary schedule dominated. Few people had time
to think about reusable components because, as
most experts agree, it takes longer to build some-
thing reusable than something merely usable.
Another problem surfaced. Most software mea-
surements focused on quantity. We began to mea-
sure new products in lines of code, thinking.that the
more lines written, the more significant the project
must be: Reuse, which takes longer and results in a
product with fewer new lines of code, bucked that
trend. The reward.system-failed-to reward reuse.
These last two problems involve management.
So,in this context at least, | agree with the experts
who say that management holds the secret to in-
creased reuse. Management can'ward off schedule
pressures and gaintime for building reusable com-
ponents. Management can find new reward sys-

IEEE Software .«%‘ March/April 1998

tems so that those who build and use reusable com-
ponents will be doing something acknowledged as
measurably positive.

But Ifear that won't be enough. If 'm right about
the dearth of potential reusable components at a
meaningful level, then all those efforts will fall short
of our unrealistic expectations.

CONCEPTUAL VS. COMPONENT REUSE

To comprehend the full picture of software reuse
we must also consider conceptual reuse. Our field’s
architecture, framework, and patterns movements
are built on the notion that more can be reused in our
field than components. Although they are right, this
is not exactly news: good practitioners have been
using conceptual techniques for decades. Software
professional Butler Lampson said, over 10 years ago,
“Most of the time, a new programis a refinement, ex-
tension, generalization, or improvement of an exist-
ing program. It’s really unusual to do something that's
completely new” (quoted in Programmers at Work,
Susan Lammers, Microsoft Press, 1986). Software re-
searcher Willemien Visser (“Strategies in Pro-
gramming Programmable Controllers: A Field Study
on a Professional Programmer,” Empirical Studies of
Programmers: Second Workshop, 1987) said much the
same thing at much the same time; “Designers rarely
start from scratch.” Good software professionals keep
their mental backpacksfilled with previously used
conceptsthat they can apply when a familiar-sound-
ing “new” problem comes along. It's not surprising,
then; that much of the material in the early books on
architecture and patterns was based on practitioner
work, not theoretical discovery. Thus concept reuse

. thrives and will continue to.

The border between conceptual and compo-

“nent reuse is a-curious one. Studies, especially those

conducted by erganizations like the NASA Goddard
Software Engineering Laboratory, show that the
borderline itself is surprisingly rigid. Most reuse
scholars agree that if more than 20 percent of a com-
ponentmust be reworked for its new use, it ismore
efficient to start from scratch: Some even say 10 per-
cent. Bending software is that difficult; modification
can be harder than building anew,

Which brings me back to my main concern. 1 be-
lieve that few software components—whether
pieces of code or software parts—can be reused at
the 80-100 percent level in the average software
product. Most of the components-that can be

reused in this way were built 30 to 40 years ago. |
hope I'm wrong, because I'm all in favor of finding
and making available more such components. But
few enterprises succeed at large-scale reuse, which
suggests that the problem is more than simply one
of will. That, in turn, means the problems with reuse
run much deeper than management.

OPTIMISM VS, REALITY

Nevertheless, there are isolated pockets of com-
ponent reuse success. The mostimportant, and cer-
tainly the most verifiably unbiased example, comes
from the Software Engineering Laboratory at NASA-
Goddard, which routinely achieves a 75 percent
reuse level. To be fair, we must note that the NASA
work focuses on a very narrow and cohesive appli-
cation domain: flight dynamics software. The
Software Engineering Lab achieved their remark-
able success in component reuse by adopting a
thorough domain analysis approach. Domain analy-
sis is a necessary but—Dby itself—not a sufficient ap-

proach to reuse. If large-scale reuse is possibleina

domain, domain analysis will find it. But it’s not al-
ways possible: there simply aren't that many objects
and tasks that are 80 percent the same in most do-
mains. Although the Lab achieved results of 75 per-
cent using an object-oriented approach facilitated
through Ada, they encountered several problems

with that language. Forced to regress somewhat to

using Fortran, the Lab still achieves 70 percent reuse
with a non-object-oriented approach.

I know that people who use OO approaches tend
to build such huge class libraries that the largest
reuse problem they encounter is in searching the
catalog to find what they need. Indeed, a thriving
computer science research community is seeking
better ways to organize and access reusable com-
ponent repositories. | suspect this is a case of opti-
mism overriding reality, however. | would like to
know the reuse count on those ciasses stashed away
in OO repositories: the number of times each class
has been reused in a real production program. | sus-
pect that the repository population is considerably
larger than the reuse counts.

BREAKTHROUGH VS. BREAKDOWN

Why have | spent so much time apparently
naysaying reuse? Because all too often our field pins

Head to Head

its hopes on some breakthrough technology that, in
the end, turns out to be BS. Reuse currently enjoys
that sort of status. One new book on reuse contains
a section labeled “Software Waste,” implying that
writing software from
scratch is a massive
waste of energy. If my
fears prove correct, our
enthusiasm for reuse,
eroded by such exag-
gerated claims, will dis-
solve. Our field de-
serves betterthan that. ¢
Most new technolo-
gies do offer some modest benefits. Reuse is one
such technology. | want our field to reap its modest
benefits without the disappointments that result
when breakthroughs become breakdowns., %

Call for
Practitioner
Reviewers

Are you out there developing
software in the real world?

Do you want to contribute to
good software practice?

Then help us and help your
colleagues by serving as
an IEEE Software reviewer!

E-mail us at
software@computer.org
for further details.

March/April 1998 Jg; |EEE Software 59

