
George Miller, a psychologist

1.

2.

Lord Kelvin, a physicist

Software Metrics

�

Product vs. process

Most metrics are indirect:

No way to measure property directly or
Final product does not yet exist

For predicting, need a model of relationship of predicted variable
with other measurable variables.

Three assumptions (Kitchenham)

2. A relationship exists between what we can measure and
what we want to know.

3. This relationship is understood, has been validated, and can be
expressed in terms of a formula or model.

Few metrics have been demonstrated to be predictable or related
to product or process attributes.

1. We can accurately measure some property of software or process.

Software Metrics

�

.

Code

Staffing

Duration, time

Cost

Static

Management

Maintainability

Testing

Design

Programmer productivity

Dynamic

Software Metrics (2)

�

Estimate number of bugs left in code.

From static analysis of code

From dynamic execution

Estimate future failure times: operational reliability

Code Metrics

�

n1 = no. of distinct operators in program
n2 = no. of distinct operands in program
N1 = total number of operator occurrences
N2 = total number of operand occurrences

Program Length: N = N1 + N2

Program volume: V = N log

(represents the volume of information (in bits) necessary
to specify a program.)

Specification abstraction level: L = (2 * n2) / (n1 * N2)

Program Effort: E = (n1 + N2 * (N1 + N2) * log

(interpreted as number of mental discrimination required
to implement the program.)

2 (n1 + n2)) / (2 * n2)

2 (n1 + n2)

Halstead’s Software Physics or Software Science

Static Analysis of Code

�

Hypothesis: Difficulty of understanding a program is
largely determined by complexity of control flow graph.

Cyclomatic number V of a connected graph G is the
number of linearly independent paths in the graph or
number of regions in a planar graph.

McCabe recommends maximum V(G) of 10.

reliability of modules.
Claimed to be a measure of testing diffiiculty and

R1 R2

R4R5

R3

McCabe’s Cyclomatic Complexity

�

High correlation with program size.

No real intuitive reason for many of metrics.

Ignores many factors: e.g., computing environment,
application area, particular algorithms implemented,
characteristics of users, ability of programmers,.

Very easy to get around. Programmers may introduce
more obscure complexity in order to minimize
properties measured by particular complexity metric.

Static Analysis of Code (Problems)

Doesn’t change as program changes.

�

Size is best predictor of inherent faults remaining
at start of program test.

One study has shown that besides size, 3 significant
additional factors:

1. Specification change activity, measured in pages of
specification changes per k lines of code.

2. Average programmer skill, measured in years.

3. Thoroughness of design documentation, measured
in pages of developed (new plus modified) design
documents per k lines of code.

Static Analysis of Code (Problems con’t)

�

Estimate number remaining from number found.

Assumptions:

Seeded faults equivalent to inherent faults in

A direct relationship between characteristics and

Unreliability of system will be directly proportional

number of exposed and undiscovered faults.

to number of faults that remain.

difficulty of detection.

A constant rate of fault detection.

Bug Counting using Dynamic Measurement

Error seeding models

Failure count models

�

What does an estimate of remaining errors mean?

Interested in performance of program, not in how
many bugs it contains.

Most requirements written in terms of operational
reliability, not number of bugs.

Alternative is to estimate failure rates or future
interfailure times.

Bug Counting using Dynamic Measurement (2)

�
	

Input-Domain Models: Estimate program reliability

Estimate conditional probability that program correct
for all possible inputs given it is correct for a specified
set of inputs.

Assumes outcome of test case given information about
behavior for other points close to test point.

Reliability Growth Models: Try to determine future
time between failures.

each of which usually associated with a program path.

using test cases sampled from input domain.

Partition input domain into equivalence classes,

Estimating Failure Rates

���

Software Reliability: The probability that a program
will perform its specified function for a stated time
under specified conditions.

Execute program until "failure" occurs, the underlying
error found and removed (in zero time), and resume
execution.

Use a probability distribution function for the interfailure

Examining the nature of the sequence of elapsed times

Assumes occurrence of software failures is a stochastic
process.

from one failure to the next.

time (assumed to be a random variable) to predict future
times to failure.

Reliability Growth Models

���

Assumption: The mechanism that selects successive
inputs during execution is unpredictable (random).

FI

Input space I

Output space O

O

Program p

is the image set of I F under the mapping pFO

F

Software Uncertainty

�
�

50
55

30

4
263
21

232
129
296

2323
143

1897
482
648

15
114
15

300
1351
748
379

1011
868

1435
245
22

3321

112
26

600
457
816
369
529
828
33

865
875

1082
6150

91
120

58
79
31
16

160
707

700
948
790

1146

1800

9
88

180
65

193
193

529
543

860
12

1247
122

1071
4116

670
2

10
176

6
236
10

281
983
261
943
990
371

108
422
227

357
197

1222
300

1783
843

3110
446
10

1864

11581
24
68
8

255

1064

134
365
290

1461
0

386
100

1160

113
77

242
0

452
233
330
810

1755
2930
109
447

5509
5485

3

325
36
97

148
0

44
445
724
30

729
75

1045

138

Execution time in seconds between successive failures.

(Read left to right in rows).

Sample Interfailure Times Data

� �

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

40 50 60 8070 90 100 120 130110

LV

JM

‘‘The nature of the software engineering process is too

particular model."
poorly understood to provide a basis for selecting a

Different models can give varying results for the same
data; there is no way to know a priori which model
will provide the best results in a given situation.

Using the Models

���

There is no physical reality on which to base our assumptions.

Assumptions are not always valid for all, or any, programs:

Software fault (and failures they cause) are independent.

Data collection requirements may be impractical.

Problems with Software Reliability Modeling

Inputs for software selected randonly from an input space.

Test space is representative of the operational input space.

Each software failure is observed.

Faults are corrected without introducing new ones.

Each fault contributes equally to the failure rate.

�
�

Fairly primitive and predictive power limited.

Function Points

Count number of inputs and output, user interactions, external
interfaces, files used.

Assess each for complexity and multiply by a weighting factor.

Used to predict size or cost and to assess project productivity.

Number of requirements errors found (to assess quality)

Change request frequency

To assess stability of requirements.

Frequency should decrease over time. If not, requirements
analysis may not have been done properly.

Software Requirements Metrics

� �

Because software intangible, not possible to measure directly.

If poor quality software produced quickly, may appear to be more
productive than if produce reliable and easy to maintain software
(measure only over software development phase).

More does not always mean better.

May ultimately involve increased system maintenance costs.

Common measures:

Lines of source code written per programmer month.

Object instructions produced per programmer month.

Pages of documentation written per programmer month.

Programmer Productivity Metrics

Test cases written and executed per programmer month.

�
�

total time required to complete project.
Take total number of source code lines delivered and divide by

What is a source line of code? (declarations? comments? macros?)

the language, the lower the apparent productivity)

How treat source lines containing more than a single statement?

More productive when use assembly language? (the more expressive

All tasks subsumed under coding task although coding time represents
small part of time needed to complete a project.

More objective.

Difficult to estimate until code actually produced.

Amount of object code generated dependent on high-level
language programming style.

Use number of object instructions generated.

Programmer Productivity Metrics (2)

�
�

Using pages of documentation penalizes writers who take time to
express themselves clearly and concisely.

So difficult to give average figure.

For large, embedded system may be as low as 30 lines/programmer-month.

Simple business systems may be 600 lines.

Studies show great variability in individual productivity. Best are
twenty times more productive than worst.

Programmer Productivity Metrics (3)

�
	

Number of parameters

Number of modules.

Number of modules called (estimating complexity of maintenance).

Fan-in: number of modules that call a particular module.
Fan-out: how many other modules it calls.

Tries to capture coupling between modules.

Understanding modules with large number of parameters will
require more time and effort (assumption).

Modifying modules with large number of parameters likely to have
side effects on other modules.

High fan-in means many modules depend on this module.

High fan-out means module depends on many other modules.

Makes understanding harder and maintenance more time-consuming.

Software Design Metrics

���

Data Bindings

within scope of both p and q
Triplet (p,x,q) where p and q are modules and X is variable

Potential data binding:

-

-

Used data binding:

Actual data binding:

A potential data binding where p and q use X.-

Reflects possibility that p and q might communicate through the
shared variable.

X declared in both, but does not check to see if accessed.

Harder to compute than potential data binding and requires more
information about internal logic of module.

-

Used data binding where p assigns value to x and q references it.

Hardest to compute but indicates information flow from p to q.-

-

Software Design Metrics (2)

���

Cohesion metric

Construct flow graph for module.

Each vertex is an executable statement.

For each node, record variables referenced in statement.

variables in the module.
Highest cohesion is when all the independent paths use all the

statements in most paths.
If a module has high cohesion, most of variables will be used by

the different statements.
Determine how many independent paths of the module go through

-

-

-

-

Software Design Metrics (3)

�
�

Techniques for software cost estimation

1. Algorithmic cost modeling:

Model developed using historical cost information that
relates some software metric (usually lines of code) to
project cost.

The most scientific approach but not necessarily the most
accurate.

2. Expert judgement

3. Estimation by analogy: useful when other projects in same
domain have been completed.

Estimate made of metric and then model predicts effort required.

Management Metrics

� �

Cost is determined by available resources

If software has to be developed in 12 months and you have
5 people available, then effort required is estimated to be 60
person months.

5. Pricing to win: estimated effort based on customer’s budget.

6. Top-down estimation: cost estimate made by considering overall
function and how functionality provided by interacting sub-functions.
Made on basis of logical function rather than the components
implementing that function.

7. Bottom-up function: cost of each component estimated and then
added to produce final cost estimate.

4. Parkinson’s Law: Work expands to fill the time available.

Management Metrics (2)

���

Build model by analyzing the costs and attributes of completed projects.

Dozens of these around -- most well-known is COCOMO.

Assumes software requirements relatively stable and project will be
well managed.

Basic COCOMO uses estimated size of project (primarily in terms
of estimated lines of code) and type of project (organic, semi-detached,
or embedded).

Effort = A * KDSI b

where A and b are constants that vary with type of project.

More advanced versions add a series of multipliers for other factors:

product attributes (reliability, database size, complexity)
computer attributes (timing and storage constraints, volatility)
personnel attributes (experience, capability)

subsystems.
and allow considering system as made up of non-homogeneous

project attributes (use of tools, development schedule)

Algorithmic Cost Modeling

�
�

Parameters associated with algorithmic cost models are highly
organization-dependent.

Mohanty: took same data and tried on several models. Estimates
ranged from $362,000 to $2,766,667.

Another person found estimates from 230 person-months to
3857 person-months.

Relies on the quantification of some attribute of the finished

Function points:

software product but cost estimation most critical early in
project when do not know this number.

Lines of code: very difficult to predict or even define.

Heavily biased toward a data processing environment-

Assessment of complexity factors leads to wide variations-
in estimates.

Evaluation of Management Metrics

� �

Value of parameters must be determined by analysis of historical
project data for organization. May not have that data or may no
longer be applicable (technology changes quickly).

Need to be skeptical of reports of successful usage of these models.

Project cost estimates are self-fulfilling: estimated often used to
define project budget and product adjusted so that budget figure
is realized.

No controlled experiments.

Some interesting hypotheses (that seem to be well accepted):

Time required to complete a project is a function of total effort
required and not a function of number of software engineers involved.

A rapid buildup of staff correlates with project schedule slippages

Throwing people at a late project will only make it later.

-

-

Evaluation of Management Metrics (2)

�
�

Programmer ability swamps all other factors in factor analyses.

Accurate schedule and cost estimates are primarily influenced by
the experience level of those making them.

Warning about using any software metrics:

Be careful not to ignore the most important factors simply
because they are not easily quantified.

Evaluation of Management Metrics (3)

�
�

