
1 3 6 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 9 0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E

David Budgen

The Loyal OppositionOpposition

o software design methods have a
future? In introducing the January-
February 1998 issue of IEEE Software, Al
Davis spoke of the hazards implicit in
“method abuse,”manifested by a desire

to “play safe.”(If things go well, you can take the credit,
but if they go wrong, the organization’s choice of
method can take the blame.) As Davis argues, such a
policy will almost certainly lead to our becoming
builders of what he terms “cookie-cutter, low-risk, low-
payoff, mediocre systems.”

The issue I’ll explore in this column is slightly dif-
ferent, although it’s also concerned with the problems
that the use of design methods can present. It can be
expressed as a question: Will the adoption of a design
method help the software development process (the
“life belt” role), or is there significant risk that its use
will lead to suboptimum solutions (the “leg iron”role)?
(At the risk of being immediately categorized as a
grammatical pedant, I will use “method” to mean “a
way of doing something,”rather than using the more
pretentious-sounding “methodology,” which more

correctly means “study of method.”) To address, but
not necessarily answer, this question, I’ll first consider
what designing involves in a wider context, then com-
pare this with what we do, and finally consider what
this might imply for the future.

THE DESIGN PROCESS

Developing solutions to problems is a distinguish-
ing human activity that occurs in many spheres of life.
So, although the properties of software-based systems
offer some specific problems to the designer (such as
software’s invisibility and its mix of static and dynamic
properties), as individual design characteristics, these
properties are by no means unique. Indeed, while
largely ignored by software engineers, the study of the
nature of design activities has long been established
as an interdisciplinary topic in its own right, with a well-
established academic journal (Design Studies).

D

Software Design
Methods:

Life Belt or Leg Iron?

E
D

IT
O

R
:R

o
b

er
t L

.G
la

ss
 •

C
o

m
p

u
ti

n
g

 T
re

n
d

s
• r

g
la

ss
@

in
d

ia
n

a.
ed

u

Continued on page 133

S e p t e m b e r / O c t o b e r 1 9 9 9 I E E E S o f t w a r e 1 3 3

Studying the problems of design in different do-
mains has produced three concepts that are partic-
ularly important in the context of the arguments
that I am putting forward:

♦ The need to assume the likely outcome of de-
sign in developing the form of a solution.1 I sometimes
liken designing to trying to reverse-engineer some-
thing that has not yet been developed! In other words,
if we had a solution of this form, what do we think its
elements and structure might look like? (I often adopt
the analogy of designing a clockwork mechanism for
a watch to illustrate this. Given a description of its ex-
ternal form, how do we develop the escapement
mechanism and the balance wheel?)

♦ The “wicked”nature of any design process.2 In
a wicked problem, a solution’s different aspects are
so extensively interconnected that in adopting a
particular solution to any one part of a problem, the
resulting interactions with the problem itself might
make the task of solving it even more intractable.
The original concept arose in the context of social
planning, but many characteristics of a wicked prob-
lem (such as the lack of a stopping rule and the ab-

sence of true or false solutions) are readily recog-
nizable facets of software development.

♦ The opportunistic nature of much observed
problem-solving activity.3 Basically, this means that
as a solution’s form emerges, the problem-solving
strategy is adapted to meet the new characteristics
that are revealed.

These three concepts challenge the oft-encoun-
tered belief that good software engineering design
solutions will most likely come from systematically
following a prescriptive procedural method. However,
we can perhaps take comfort (admittedly of a some-
what limited kind) in that workers in other disciplines
also recognize the difficulties that are implicit in de-
sign activities!

HOW CAN DESIGN KNOWLEDGE
BE TRANSFERRED?

Here indeed lies the rub. Back in the days (the
late ’60s and early ’70s) when people recognized
that a systematic approach to software develop-
ment was needed to cope with larger-scale projects,
it became necessary to find ways of promulgating

of course, multitier client-server systems using these
technologies. The authors also devote 200 pages to
comparing Corba and Java ORBs and their middle-
ware competitors such as Sockets, HTTP/CGI, Servlets,
RMI, Caffeine, and DCOM.

Because the book intentionally focuses on Java
and Corba solutions, it has only one token chapter
on interoperability between a C++ server and a Java
client. The book also includes a CD containing source
code for its examples and evaluation copies of

♦ Borland/Visigenic VisiBroker for Java and C++
(version 3.1),

♦ Borland/Visigenic CORBA Naming Service,
♦ Symantec Visual Cafe PDE (Professional De-

velopment Edition),
♦ IBM Visual Age for Java,
♦ Borland JBuilder Client/Server,
♦ Java Development Kit 1.1,
♦ Connect Software FastForward JDBC driver,
♦ Netscape Enterprise Server,
♦ Netscape Communicator, and
♦ InstallShield Java Edition.

BEHIND THE HYPE
Verbose at times, with a lot of pro-Corba propa-

ganda to wade through, the book is nevertheless a

valuable introduction to and reference for its subject
matter. Its secondary purpose seems to be lobbying
for Corba as the middleware solution. Separating hype
from information is left to the reader. On the other
hand, this appears to be the status quo with most pub-
lications during this time of middleware holy wars.

Also, because the book is based on a Borland/
Visigenic Corba implementation, the code is written
specifically for these packages. If you are using an-
other vendor’s package, such as Iona’s Orbix, you will
need to do a bit of translation—which can be frus-
trating at times. If you are a Corba newbie, one way
to hasten the learning process is to read the book in
parallel with your ORB-vendor’s tutorials manual and
some additional Corba literature. Such useful com-
panions include CORBA Distributed Objects: Using
Orbix, by Seán Baker (Addison Wesley Longman,
1997) and Sams’Teach Yourself CORBA in 14 Days, by
Jeremy Rosenberger (Sams, 1998).

In spite of the previous nits, Client/Server Pro-
gramming with JAVA and CORBA is one of the best
books available on its subject. Nearly a year after its
release, it is still rated highly in Internet newsgroups
and by professionals using it to develop real-world
distributed-systems solutions. If you want to use
Java and Corba as your middleware solution, this
book is well worth reading. ❖

Continued from 136

1 3 4 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 9

and encouraging the adoption of desirable prac-
tices, such as structured programming. A procedural
form (do this, then do this, then...) was one that read-
ily lent itself to this role and had the further advan-
tage that it could be relatively easily conveyed
through books and courses. Indeed, methods em-
ploying this form, such as Michael Jackson’s JSP
(Jackson Structured Programming) and the early
work of Ed Yourdon and his coworkers, met some
real needs. By the late ’70s, use of the procedural
form was perhaps not so much established as en-
trenched. Even so, there were “good” practices that
did not readily lend themselves to such a form.
Perhaps the most obvious one was (and still is) in-
formation hiding, for which no satisfactory form of
procedural development practice has yet been
devised.

In reaction to such shortcomings, the approach
to method development in the ’80s was essentially
“pile on more” (more diagrammatical forms, more
models, and, alas, more complexity). A few years ago,
I performed an analysis of design methods that in-
volved modeling the transformations between de-
sign model states for different methods.4 This analy-
sis revealed a marked increase in the complexity of
both the states and the transformation activities for
later design methods. Arguably, much of this com-
plexity stems from what I consider to be the para-
dox of object orientation, which seems to provide
excellent paradigms for analysis and implementa-
tion but presents major difficulties for the designer!

Although we academics might be reluctant to
admit this, procedural design methods also provide
a relatively tractable basis for teaching design and,
equally important, to help devise examination ques-
tions. (To continue in this vein of honesty, while
teaching about design might be pedagogically at-
tractive, if by no means easy, knowing how to use a
design method looks better on a student’s CV!) Only
in the ’90s have we seen attempts to develop other
paradigms for transferring design knowledge,
mainly through patterns and architectures. How-
ever, our present portfolio of software design prac-
tices still has little that really addresses those design
characteristics I identified previously.

As a final comment on our practices, consider the
observation of both Fred Brooks5 and Bill Curtis and
his colleagues6 that software development often de-
pends on a small number of exceptional designers
who “think on a system level.” (The additional ob-
servation from Curtis that such people might not be
particularly good programmers is also significant in

this department’s context.) One resulting question
is, “How did these designers acquire their expertise,
and how much did observation, experience, or use of
methods contribute?”Could this possibly imply that
developing generic design skills might be more im-
portant than using methods to transfer procedural
knowledge derived from the experiences of others?

THE EMPIRICAL VIEW

Given that the adoption of systematic evaluation
practices in software engineering has been, and
continues to be, a slow process, it is perhaps not sur-
prising that little work has been published that eval-
uates design methods. Indeed, the very idea of con-
ducting any form of evaluation of how a design
method is used raises questions about what can
usefully be evaluated. Should we be concerned with
a method’s ease of use, or with the quality of solu-
tions produced (and the criteria for deciding this),
or with scalability to larger problems, or…?

If we examine the (admittedly limited) empirical
material available, two conclusions emerge:

♦ Studies of actual design activities have ob-
served only limited use of method practices and
have clearly indicated that experienced designers
are highly likely to employ opportunistic strategies.7

♦ Studies of method adoption suggest that a
method’s practices might be modified significantly
in use.8 (You can view this as either positive—if you
believe that design practices should not be over-
constrained—or negative—if you are concerned
about ensuring consistency of practice to aid future
maintenance!)

One distinct peculiarity of software design is the
extent to which commercial interests have domi-
nated the codifying of associated practices. Many
of the more widely known design methods, such as
Structured Analysis/Structured Design, JSP, and
Objectory, have been developed and marketed
largely by consultancies and commercial organiza-
tions. This situation has few parallels in related areas
such as requirements elicitation or software testing.
Although this clearly suggests that industry in par-
ticular perceives a real need for design skills, it does
not create the most objective forum for considering
the question of evaluation. We need to increase the
use of empirical studies in this area, while accepting
that evaluation is itself a wicked problem, for which
we should therefore not expect to obtain true or
false answers.

S e p t e m b e r / O c t o b e r 1 9 9 9 I E E E S o f t w a r e 1 3 5

WHERE NEXT?

If we accept these arguments, we might conclude
that software design methods are at least straining
the limits of their effectiveness, and indeed might
have overshot them. So what other factors might
influence our search for more effective approaches
to developing design expertise?

One factor must be the question of how software
will be developed in the future. Procedural software
design methods are implicitly predicated on a hand-
crafted approach to software construction, and
driven primarily by technical factors. However, the
growing emphasis on reuse and components and
the associated influence of organizational factors9

offer major challenges to this assumption. Designing
a system to reuse existing components becomes a
very different process (but not necessarily a less cre-
ative one). It also leads to the complementary ques-
tion of how we should design components for reuse.
As these cultural shifts begin to establish themselves,
the use of opportunistic forms and the adaptation
of method practices I identified previously will likely
become even more marked, suggesting that reliance
on methods will not remain a realistic option.

So, if the software design method might be be-
coming an anachronism (if it isn’t already), what
other means are available for transferring design ex-
perience and knowledge?

♦ Design patterns (or idioms). These perhaps
offer a closer analogy to the way that we teach de-
sign in a programming context (“this is the type of
problem where this looping construct is appropri-
ate...”). However, the descriptive forms used to
record design solutions usually lack the well-
defined syntax and semantics of a programming
language. So, although design patterns should be
a part of design education, they will not be suffi-
cient in themselves.

♦ Design architectures. The concept of software ar-
chitectural style might yet prove to be more useful
than that of the pattern, although it might also pro-
vide the syntactic and semantic framework for pat-
terns. (But if so, please, can we agree to stop using such
grammatical monstrosities as “architecting” and “ar-
chitected”?) Architectural concepts seem able to pro-
vide a powerful framework for teaching how design
solutions can emerge for a given type of problem.

♦ Tools. To date, the use of tools to support design
activity has largely reflected pencil-and-paper prac-
tices, but with the disadvantage of having a less adapt-
able form. This disadvantage has probably led to some

of the evident disillusionment with CASE tools. A fur-
ther barrier to success seems to be visualization. Just
what does an object or procedure (method, subpro-
gram, and so on) look like when viewed as a 2D or 3D
projection? Despite these problems, tool support will
likely be needed to make both patterns and architec-
tures widely usable and to provide the speed of de-
velopment increasingly demanded. Can such tools
also help develop and transfer expertise?

To return to the question with which I started, is
not now the time to accept that the life belt has

become somewhat waterlogged and is likely to act
more as a leg iron? And if, as a corollary to this, we
consider that procedural methods have no future,
what might take their place? How can we break the
mold—how do we stop pretending that designing
software is largely a matter of following a set of well-
defined activities, and recognize it as a creative
process that requires us to find ways to develop the
design skills needed to build the software systems
of the future?

This leads to another question: How can we iden-
tify, grow, and encourage those talents needed for
the great designers who will create elegant and ef-
fective solutions to problems? To make real progress,
we need to find an answer to this question. (And
note that, in the true spirit of the wicked problem,
attempting to answer my initial question has merely
led to new ones!) ❖

REFERENCES
1. J.C. Jones, Design Methods: Seeds of Human Futures, Wiley

Interscience, New York, 1981.

2. H.J. Rittel and M.M. Webber, “Planning Problems Are Wicked
Problems,” Developments in Design Methodology, N. Cross, ed.,
John Wiley & Sons, New York, 1984, pp. 135–144.

3. B. Hayes-Roth and F. Hayes-Roth, “A Cognitive Model of
Planning,” Cognitive Science, Vol. 3, 1979, pp. 275–310.

4. D. Budgen, “’Design Models’ from Software Design Methods,”
Design Studies, Vol. 16, No. 3, July 1995, pp. 293–325.

5. F.P. Brooks Jr., “No Silver Bullet: Essence and Accidents of Software
Engineering,” Computer, Vol. 20, No. 4, Apr. 1987, pp. 10–19.

6. B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the Software
Design Process for Large Systems,” Comm. ACM, Vol. 31, No. 11,
Nov. 1988, pp. 1268–1287.

7. S.P. Davies and A.M. Castell, “Contextualizing Design:
Narratives and Rationalization in Empirical Studies of Software
Design,” Design Studies, Vol. 13, No. 4, Oct. 1992, pp. 379–392.

8. J. Iivari and J. Maansaari, “The Usage of Systems Development
Methods: Are We Stuck to Old Practices?” Information &
Software Technology, Vol. 40, No. 9, Sept. 1998, pp. 501–510.

9. A. Lynex and P.J. Layzell, “Organisational Considerations for
Software Reuse,” Annals Software Eng., Vol. 5, 1998, pp. 105–124.

David Budgen is a professor of software engineering and the
head of the Department of Computer Science at Keele Uni-
versity. Contact him at the Computer Science Dept., Keele
Univ., Staffordshire, ST5 5BG, UK; db@cs.keele.ac.uk.

