3
=
&)
>
S
S
IE
m

128

The Interplay of
Art and Science:
In Software

Terry Bollinger, The MITRE Corporation

Ithough history and science :
have provided lots of important :
bits and pieces of information !
about the world around us, we :
are still pretty short on getting :
a good overall understanding of what’s
going on. Take, for example, the most :
profoundly accurate and predictive :
physical theory of all time, a collection
of concepts and equations that goes by :
the unwieldy moniker of Quantum Elec- :
trodynamics, or QED. Ignoring for the
moment the intimidating name, QED is :
really just an astonishingly compact and :
simple set of rules for how electrons (the
visible parts of atoms) and photons (par- :

ticles of light) interact.

ULTIMATE PREDICTION THEORY?

Developed by Richard Feynman in the
late 1950s, QED is so conceptually com-
plete and accurate in its ability to predict :
atomic behavior that no one has since :
been able to show any deviation between :
its predictions and the actual behaviors :
of atoms and light. And since atoms and
light make up nearly every significant
aspect of the world around us (with the :
exceptions of gravity and nuclear :
energy), QED in principle could predict :
¢ only can’t show you the forest for the
: trees, it can’t show you the trees for the
leaves—or the leaves for the aphids, for
¢ that matter. To put it simply, QED is
¢ computationally bound in a fashion that
©can never be fully resolved. Even with the
© latest algorithms and hardware strate-

Guest Critic: Terry Bollinger, The MITRE
Corporation, 1820 Dolley Madison Blvd.,
McLean, VA 22102-3481,;
terrybol@erols.com.

Computer

Humans have a funny

knack for figuring out

how to do something
when there is no
perfect answer.

just about any sort of event. From events
as small as the interactions of two atoms
through events as unimaginably complex
as populations electing new leaders, all
are in principle directly understandable
and predictable using QED.

The catch
The catch, of course, is the phrase “in
principle.” In actual practice, QED not

gies, the calculations required to fully
model small sets of molecules using QED
would be too complex. Besides, other less
i precise but easier-to-calculate methods
exist that accomplish much the same
thing.
QED modeling is also hampered by a
very serious information acquisition prob-
Iem. In short, a full QED model can be
populated only by literally taking an object
apart atom by atom—in other words, by
: obliterating it. Besides being physically

© impractical, such a procedure would also
. significantly decrease the chances of getting
. people to volunteer for QED modeling.

Scientific workaround

QED is by no means alone in the prob-

© lem of scale-up. In fact, science is not so
i much a set of absolutely fundamental
¢ rules as it is a collection of useful approx-
© imations that suffice only for limited
: regions of the real world.

Thus while QED is useful at the level

- of individual electrons and photons, it
. generally gives way to the simplified
. equations of quantum mechanics for
modeling objects the size of atoms and
- molecules. Further simplifications occur
¢ when describing the motions of atoms in
a gas, in which the striking complexity
. of a single atom is represented as noth-
. ing more than a billiard ball. Still further
up the scale of simplification and approx-
¢ imation is fluid mechanics.

By the time all this reaches the level of

a woman paddling a kayak in a spring
¢ whitewater race, the meaningful abstrac-
. tions are no longer isolated to the fluid
itself. Instead, they become complex col-
i lages of the kayak’s motion and angle,
: the woman’s muscle strength and
: endurance, and the subtle visual clues
: that the water provides for spotting hid-
© den rocks and currents.

NAVIGATING THE UNKNOWN

It is here that the remarkable nature of

human intelligence truly exhibits itself.
¢ As does the kayak racer, humans have an
. uncanny knack for figuring out how to
do something in those many situations
i where there is no perfect answer. It is at
. this boundary that science truly does
merge with art, and progress is possible

Continued on page 125

Binary Critic
Continued from page 128

only when they work together.

even oppose the hypothesis.

or even irrelevant issues.

Einstein developed his gravitational :
theories primarily because of his intran-
sigent fretting about the impossibility of :
a motionless electromagnetic wave, a :
topic that most physics advisers of his
day would have suggested was an irrele- :
vant problem of insignificant conse- :
quence. Yet he pursued this odd little side :
current until it led him to a vast river that :
completely unraveled conventional con-

cepts of space and time.

Similarly, Feynman spoke in one of his :
autobiographies of how QED originated :
in part from his wondering about the :
behavior of a spinning lunch plate in the :
cafeteria—hardly the sort of topic that :
you would expect to revolutionize quan-

tum physics!

SOFTWARE AND THE INTERPLAY
OF ART AND REASON

smarter than any one of its members.

To understand this proposition, you :
must be able to view software develop-
ment, like physics, as beginning with a :
set of givens or preexisting results. In :

i physics, these givens are the outcomes of

Rigorous science provides a frame- :
work and a solid basis for further analy- :
sis. It prevents you from following a
hunch into untestable speculation or, :
worse, into superstitious reliance on fac- :
tors that are provably irrelevant or that :

earlier experiments and the implications

implied by mathematics and computa-
tion theory. For both physicists and soft-

vastly more powerful starting points.

However, there is something more sub-
tle going on here than just providing clever :
people with more and more powerful :
¢ tools. The most powerful results of physics :
and software are the ones whose elegance :
and simplicity make them into what might
best be called tools of the mind. By this | :
simply mean concepts whose clarity of def- :
inition and power of application make it :
easier to discern and explore new ideas :
that might otherwise be too remote or too :
 cist and the software developer to ride
: the wave of earlier thought and enter the
the virtual machines of software are both :
. relatively simple concepts when defined in
terms of their underlying premises. Yet nei- :
ther of them can be easily understood or :
{ AND INTELLIGENCE
of the mind provided by earlier work in :

deeply buried in complexity to be recog-
nized. The virtual particles of QED and

arrived at without first possessing the tools

the same subjects.

be much impressed by a student who
after Newton. Similarly, software devel-
opers should not be much impressed by
the practitioners of software development

capabilities over and over again.
This is a different way to look at soft-

what | believe is a more effective under-
standing of what is meant by software

“theorems” (modules or subsystems)

powerful theorems. To be effective, these

: collected tools must provide not just
: functionality, but the simplicity of pur-
of validated theories, which together :
form a basis for constructing new, more
powerful theories. In software, the givens :
are the functional capabilities provided :
by earlier development efforts and the
¢ rules of combination and construction

The artistic part of this process lets :
science move unexpectedly into new cur-
rents and previously unmapped under- :
standing. What is most striking about the :
biographies of truly great physicists such :
as Albert Einstein and Richard Feynman :
is how consistently their greatest theories :
stemmed from pursuing seemingly minor

pose and power that makes them into
powerful tools of the mind.

Such a suite of software components
must support multiple levels of working
detail, just as physical theories allow

%analysis at multiple levels: General
: abstractions give way to more detailed
i analytical needs. As with the kayak
ware developers, the availability of :
previous results provides them with

racer, it is this ability of both the physi-

The creation of genuinely
new software has far
more in common with

developing a new theory

of physics than it does
with producing cars
or watches on an
assembly line.

domain where science, art, and insight
interplay effectively.

PROCESS IMPROVEMENT

From this it stands to reason that

. process improvement (that is, the process
An important corollary to the idea of
. tools of the mind is that reinventing such
a tool is decidedly less useful than using
¢ it to create new tools and results. For
¢ example, a modern physicist would not

What does this history of physics have :
to do with software? Allow me to pre- :
sent a peculiar and (I hope) controversial :
thought: The creation of genuinely new :
software has far more in common with :
developing a new theory of physics than :
it does with producing cars or watches :
on an assembly line. As a corollary, the :
goal of a software process improvement :
should not simply be to “reduce errors™
or “increase predictability.” Instead, :
process improvement should seek to :
make a group of developers collectively :
: goal is to collect the most powerful and
carefully generalized set of software :
: the simple process improvements for
possible for use in constructing still more :

of helping projects produce good soft-

: ware faster and more efficiently) is more
: than simply adding good measurement
and controls to a process. To be truly
. successful, process improvement must
. address the much deeper and uniquely
““discovered” gravity a few hundred years
: ative, intelligent problem solving across
. a group of heterogeneous individuals
: and computers.

who reinvent the same basic software :

difficult issue of how to distribute cre-

Stated another way, major process

. improvement will require increasing the
group 1Q of a collection of people and
ware development, one that emphasizes :
: whole is faster and more effective than
* any one of its parts at solving new and
reuse. To a software developer who oper- :
ates in the same way as a physicist, the :
THEORIES OF IMPROVEMENT

machines. That way, the group as a

difficult development problems.

But why is this necessary? Why can’t

replicated, factory-style products work

i for software, too? Is the group 1Q idea

October 1997

125

126

Binary Critic

really that important to software process
improvement?

retical background of software process

the lack of such a theoretical basis. Too

Explicitly recognizing the
group IQ concept helps
avoid “process
stupidification,” in which
a group becomes more
stupid as a whole than
its individual members.

often, the comparison of software devel-
opment to factory production has been

insight into how software is developed.
For example, even a cursory glance at

responds to software development is the
design of new car models, not the repli-

i cation of cars in a factory. Designing a
new car model is a complex, risky
We can find the answers in the theo- :

process. It requires balancing issues such

i as previous designs, market expectations,
improvement—or, to be more precise, in
i ways that can be greatly assisted by com-
. puter technology. Nonetheless, this :
i process very much depends on the avail-
ability of experienced problem solvers.

new technologies, and artistic factors in

Ironically, many people frequently

compare software development to the
: automobile’s factory phase, a point in
: time long after designers have resolved
the tricky design issues.

© Another way of understanding the
. importance of group IQ to software
development is to recognize that soft-
: ware is a uniquely nonphysical entity, a
. creation that is as close to being a pure
© capture of complex intellectual reason-
based more on hopes, dreams, and fund- :
ing strategies than on any profound !
¢ representation, software ultimately cap-
¢ tures a vast range of solutions to intel-
the automobile industry leads you to sus- :
pect that the part of that process that cor- :

ing as humankind has ever developed.

lectual problems ranging from how to

COMPUTER

Innovative technology for computer professionals

Circulation: Computer (ISSN 0018-9162) is published monthly by the IEEE Com-
puter Society. IEEE Headquarters, 345 East 47th St., New York, NY 10017-2394;
IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box
3014, Los Alamitos, CA 90720-1314; voice (714) 821-8380; fax (714) 821-4010;
IEEE Computer Society Headquarters,1730 Massachusetts Ave. NW, Washington,
DC 20036-1903. Annual subscription included in society member dues. Nonmem-
ber subscription rate available upon request. Single-copy prices: members $10.00;
nonmembers $20.00. This magazine is also available in microfiche form.

Postmaster: Send undelivered copies and address changes to Computer, IEEE
Service Center, 445 Hoes Lane, Piscataway, NJ 08855. Periodicals Postage Paid at
New York, New York, and at additional mailing offices. Canadian GST
#125634188. Canada Post International Publications Mail Product (Canadian Dis-
tribution) Sales Agreement Number 0487910. Printed in USA.

Editorial: Unless otherwise stated, bylined articles, as well as product and service
descriptions, reflect the author’s or firm’s opinion. Inclusion in Computer does not
necessarily constitute endorsement by the IEEE or the Computer Society. All
submissions are subject to editing for style, clarity, and space.

Computer

The quandary of how to add new soft-
ware solutions into that universe of old
and new solutions is itself a strikingly

: difficult problem. It’s not a problem solv-
. able by techniques based on making sure

one bolt looks exactly like another.
Software development must be both cre-

. ative and constrained, but the con-
: straints need to provide structure and

direction rather than prevent a software

. solution from traveling the waves of new

ideas and innovations.

BUILDING AN APPROACH
We can build ““smarter” processes in

: several ways.

Make group IQ improvement

: amajor goal

Explicitly recognizing the group 1Q

. concept helps avoid “process stupidifi-
No matter what its physical or machine :
: stupid as a whole than its individual

cation,” in which a group becomes more

members. Process stupidification is a par-

. ticularly strong risk when the metrics for
make a computer perform a very simple :
: operation to abstract reasoning about :
: some of the most profound problems.

process improvement have been struc-
tured around replication. Such metrics

. can drive the group to perform the same
: comfortable programming tasks repeat-
. edly to increase productivity and quality

metrics. In contrast, the key indicator of
: increasing group 1Q is a group’s ability
to solve problems that no single person
would have been able to solve alone.

Avoid using replication metrics
. to judge design efficiency
Replication metrics are aimed at

:ensuring that every piece produced on an
. assembly line is within some level of con-
. formance to an existing model. The dan-
: ger in applying such metrics to
. design-intensive activities is that it can

produce behaviors that are directly con-

. trary to the overall efficiency of the

resulting products. For example, metrics

: that focus too tightly on production of

lines of code per staff-day can lead to
inadvertent or intentional code “sand-
bagging”—the addition of inefficient or

essentially pointless lines of code.

Instead, design metrics should focus
more on looking for the unknown and
potentially deadly risks associated with

‘ any completely new design and should
. encourage looking for the unexpected.

Look at the Skunkworks model
The

craft designs. It also provides one of the

most intriguing models for increasing the :

efficiency of a design-intensive project.

Published information on the Skunk- :
works indicates that they use small
groups of experienced engineers in a
rapid prototyping mode that helps them :
eliminate dead-end paths early, before
such paths become costly to change. :
Bureaucracy is kept to a minimum, and :
communications between technical peers
is excellent. The Skunkworks seems to
work in part because it encourages the :
innate ability of people to communicate :
rather than :
attempting to regiment such communi- :
cations via an artificial (and often out-of-
critical role of the software genius, the
¢ woman or man able and willing to navi- :
gate the hidden paths and channels at the

It is astonishing how often methods :
intended to “improve” a software process :
actually wind up trying to make people
into computers. Since computers have the :
perfect memories and huge information :
channels, they need to store most of a :
group’s “memory” and “communica- :
People don’t remember things :
very well and are great at botching
detailed communications, but they are :
also the only ones who actually solve new :
problems. The structure of an intelligent
group must recognize these complemen-
tary skills and make use of both sets. It :
should avoid having people do repetitive
or boring tasks that could be automated. :

If your design process is repeatedly :
performing the same tasks, take a closer :
look. You are probably falling into the :
trap of people doing things that the com- :
puter should be doing, either because
they are comfortable or because no one :
is stepping back to look for better ways :

well in small groups,

touch) bureaucracy.

Use people for problem solving

tions.”

to do the same task.

Build and maintain a suite of
starting-point technologies

Developers should view good tools and
components as the starting points for :
development and the keys to rapid devel-
opment of new tools. This is especially :
true since the Internet explosion, which :

highly classified Lockheed :
““Skunkworks” project has been respon-
sible for some of the most innovative air- :

oftware is a discipline full of§
' ironies. No other field of science or :

¢ has made it possible to find components

and evaluation information faster and
more easily than was ever possible before.

engineering has successfully pro-
duced machines—*“soft” though they
may be—of such incredible complexity
or sheer utility as the software commu-
nity. And yet we are also rightly accused

of sloppy work, sloppy thinking, and :
: to ourselves. If there is any one lesson
¢ from the development of powerful phys-
ble? How can a community noted for its :
progress begins with the unrelenting pur-
: suit of the annoying paradoxes and dan-
: gling threads that ruin the status quo’s
i otherwise tidy appearance. [J

The answer surely lies in part in our :

. Terry Bollinger is a principal information
systems engineer at The MITRE Corpo-

risky development practices. How is this
paradox of software productivity possi-

immature development methods be the
very same one that has successfully pro-
duced the largest and most complex
working machines in human history?

unwillingness to recognize the absolutely

i boundary between software science and
: art. While physics has always proclaimed
: its geniuses (although usually belatedly),
: we in software seem curiously ashamed

of ours. After all, geniuses cannot be repli-

i cated, and what cannot be replicated can-
not easily be scheduled and priced. For a
: field whose bread and butter is commer-
. cial and government contracts, such an
admission of dependency on unique indi-
: viduality and skill is not easy.

And yet we must admit it, even if only

ical theories such as QED, it is that real

ration. Contact him at (703) 883-5638;

: terrybol@erols.com.

(BOK)) 233-2622

The smartest
software on the Web uses Al

Centrallze your intelligence
\ with CIA Server

¥ Browser/Server Artificial Intelligence
based on Java, COM, Active Agent X,
Eclipse and Rete ++.

Add brains to browsers & -

T

with Cafe' Rete’ /A%

The Haley Enterprise

hitp:// waw, haley.com

info@haley.com

Reader Service Number 12

