
A
lthough history and science
have provided lots of important
bits and pieces of information
about the world around us, we
are still pretty short on getting

a good overall understanding of what’s
going on. Take, for example, the most
profoundly accurate and predictive
physical theory of all time, a collection
of concepts and equations that goes by
the unwieldy moniker of Quantum Elec-
trodynamics, or QED. Ignoring for the
moment the intimidating name, QED is
really just an astonishingly compact and
simple set of rules for how electrons (the
visible parts of atoms) and photons (par-
ticles of light) interact.

ULTIMATE PREDICTION THEORY?
Developed by Richard Feynman in the

late 1950s, QED is so conceptually com-
plete and accurate in its ability to predict
atomic behavior that no one has since
been able to show any deviation between
its predictions and the actual behaviors
of atoms and light. And since atoms and
light make up nearly every significant
aspect of the world around us (with the
exceptions of gravity and nuclear
energy), QED in principle could predict

just about any sort of event. From events
as small as the interactions of two atoms
through events as unimaginably complex
as populations electing new leaders, all
are in principle directly understandable
and predictable using QED.

The catch
The catch, of course, is the phrase “in

principle.” In actual practice, QED not
only can’t show you the forest for the
trees, it can’t show you the trees for the
leaves—or the leaves for the aphids, for
that matter. To put it simply, QED is
computationally bound in a fashion that
can never be fully resolved. Even with the
latest algorithms and hardware strate-

gies, the calculations required to fully
model small sets of molecules using QED
would be too complex. Besides, other less
precise but easier-to-calculate methods
exist that accomplish much the same
thing.

QED modeling is also hampered by a
very serious information acquisition prob-
lem. In short, a full QED model can be
populated only by literally taking an object
apart atom by atom—in other words, by
obliterating it. Besides being physically
impractical, such a procedure would also
significantly decrease the chances of getting
people to volunteer for QED modeling.

Scientific workaround
QED is by no means alone in the prob-

lem of scale-up. In fact, science is not so
much a set of absolutely fundamental
rules as it is a collection of useful approx-
imations that suffice only for limited
regions of the real world.

Thus while QED is useful at the level
of individual electrons and photons, it
generally gives way to the simplified
equations of quantum mechanics for
modeling objects the size of atoms and
molecules. Further simplifications occur
when describing the motions of atoms in
a gas, in which the striking complexity
of a single atom is represented as noth-
ing more than a billiard ball. Still further
up the scale of simplification and approx-
imation is fluid mechanics.

By the time all this reaches the level of
a woman paddling a kayak in a spring
whitewater race, the meaningful abstrac-
tions are no longer isolated to the fluid
itself. Instead, they become complex col-
lages of the kayak’s motion and angle,
the woman’s muscle strength and
endurance, and the subtle visual clues
that the water provides for spotting hid-
den rocks and currents.

NAVIGATING THE UNKNOWN
It is here that the remarkable nature of

human intelligence truly exhibits itself.
As does the kayak racer, humans have an
uncanny knack for figuring out how to
do something in those many situations
where there is no perfect answer. It is at
this boundary that science truly does
merge with art, and progress is possible

The Interplay of
Art and Science

in Software
Terry Bollinger, The MITRE Corporation

128 Computer

Bi
na

ry
 C

rit
ic

Humans have a funny
knack for figuring out
how to do something

when there is no
perfect answer.

Guest Critic: Terry Bollinger, The MITRE
Corporation, 1820 Dolley Madison Blvd.,
McLean, VA 22102-3481;
terrybol@erols.com.

Continued on page 125

.

October 1997 125

Binary Critic
Continued from page 128

only when they work together.
Rigorous science provides a frame-

work and a solid basis for further analy-
sis. It prevents you from following a
hunch into untestable speculation or,
worse, into superstitious reliance on fac-
tors that are provably irrelevant or that
even oppose the hypothesis.

The artistic part of this process lets
science move unexpectedly into new cur-
rents and previously unmapped under-
standing. What is most striking about the
biographies of truly great physicists such
as Albert Einstein and Richard Feynman
is how consistently their greatest theories
stemmed from pursuing seemingly minor
or even irrelevant issues.

Einstein developed his gravitational
theories primarily because of his intran-
sigent fretting about the impossibility of
a motionless electromagnetic wave, a
topic that most physics advisers of his
day would have suggested was an irrele-
vant problem of insignificant conse-
quence. Yet he pursued this odd little side
current until it led him to a vast river that
completely unraveled conventional con-
cepts of space and time.

Similarly, Feynman spoke in one of his
autobiographies of how QED originated
in part from his wondering about the
behavior of a spinning lunch plate in the
cafeteria—hardly the sort of topic that
you would expect to revolutionize quan-
tum physics!

SOFTWARE AND THE INTERPLAY
OF ART AND REASON

What does this history of physics have
to do with software? Allow me to pre-
sent a peculiar and (I hope) controversial
thought: The creation of genuinely new
software has far more in common with
developing a new theory of physics than
it does with producing cars or watches
on an assembly line. As a corollary, the
goal of a software process improvement
should not simply be to “reduce errors”
or “increase predictability.” Instead,
process improvement should seek to
make a group of developers collectively
smarter than any one of its members.

To understand this proposition, you
must be able to view software develop-
ment, like physics, as beginning with a
set of givens or preexisting results. In

physics, these givens are the outcomes of
earlier experiments and the implications
of validated theories, which together
form a basis for constructing new, more
powerful theories. In software, the givens
are the functional capabilities provided
by earlier development efforts and the
rules of combination and construction
implied by mathematics and computa-
tion theory. For both physicists and soft-
ware developers, the availability of
previous results provides them with
vastly more powerful starting points.

However, there is something more sub-
tle going on here than just providing clever
people with more and more powerful
tools. The most powerful results of physics
and software are the ones whose elegance
and simplicity make them into what might
best be called tools of the mind. By this I
simply mean concepts whose clarity of def-
inition and power of application make it
easier to discern and explore new ideas
that might otherwise be too remote or too
deeply buried in complexity to be recog-
nized. The virtual particles of QED and
the virtual machines of software are both
relatively simple concepts when defined in
terms of their underlying premises. Yet nei-
ther of them can be easily understood or
arrived at without first possessing the tools
of the mind provided by earlier work in
the same subjects.

An important corollary to the idea of
tools of the mind is that reinventing such
a tool is decidedly less useful than using
it to create new tools and results. For
example, a modern physicist would not
be much impressed by a student who
“discovered” gravity a few hundred years
after Newton. Similarly, software devel-
opers should not be much impressed by
the practitioners of software development
who reinvent the same basic software
capabilities over and over again.

This is a different way to look at soft-
ware development, one that emphasizes
what I believe is a more effective under-
standing of what is meant by software
reuse. To a software developer who oper-
ates in the same way as a physicist, the
goal is to collect the most powerful and
carefully generalized set of software
“theorems” (modules or subsystems)
possible for use in constructing still more
powerful theorems. To be effective, these

collected tools must provide not just
functionality, but the simplicity of pur-
pose and power that makes them into
powerful tools of the mind.

Such a suite of software components
must support multiple levels of working
detail, just as physical theories allow
analysis at multiple levels: General
abstractions give way to more detailed
analytical needs. As with the kayak
racer, it is this ability of both the physi-

cist and the software developer to ride
the wave of earlier thought and enter the
domain where science, art, and insight
interplay effectively.

PROCESS IMPROVEMENT
AND INTELLIGENCE

From this it stands to reason that
process improvement (that is, the process
of helping projects produce good soft-
ware faster and more efficiently) is more
than simply adding good measurement
and controls to a process. To be truly
successful, process improvement must
address the much deeper and uniquely
difficult issue of how to distribute cre-
ative, intelligent problem solving across
a group of heterogeneous individuals
and computers.

Stated another way, major process
improvement will require increasing the
group IQ of a collection of people and
machines. That way, the group as a
whole is faster and more effective than
any one of its parts at solving new and
difficult development problems.

THEORIES OF IMPROVEMENT
But why is this necessary? Why can’t

the simple process improvements for
replicated, factory-style products work
for software, too? Is the group IQ idea

The creation of genuinely
new software has far
more in common with

developing a new theory
of physics than it does

with producing cars
or watches on an

assembly line.

.

126 Computer

really that important to software process
improvement?

We can find the answers in the theo-
retical background of software process
improvement—or, to be more precise, in
the lack of such a theoretical basis. Too

often, the comparison of software devel-
opment to factory production has been
based more on hopes, dreams, and fund-
ing strategies than on any profound
insight into how software is developed.

For example, even a cursory glance at
the automobile industry leads you to sus-
pect that the part of that process that cor-
responds to software development is the
design of new car models, not the repli-

The quandary of how to add new soft-
ware solutions into that universe of old
and new solutions is itself a strikingly
difficult problem. It’s not a problem solv-
able by techniques based on making sure
one bolt looks exactly like another.
Software development must be both cre-
ative and constrained, but the con-
straints need to provide structure and
direction rather than prevent a software
solution from traveling the waves of new
ideas and innovations.

BUILDING AN APPROACH
We can build “smarter” processes in

several ways.

Make group IQ improvement
a major goal

Explicitly recognizing the group IQ
concept helps avoid “process stupidifi-
cation,” in which a group becomes more
stupid as a whole than its individual
members. Process stupidification is a par-
ticularly strong risk when the metrics for
process improvement have been struc-
tured around replication. Such metrics
can drive the group to perform the same
comfortable programming tasks repeat-
edly to increase productivity and quality
metrics. In contrast, the key indicator of
increasing group IQ is a group’s ability
to solve problems that no single person
would have been able to solve alone.

Avoid using replication metrics
to judge design efficiency

Replication metrics are aimed at
ensuring that every piece produced on an
assembly line is within some level of con-
formance to an existing model. The dan-
ger in applying such metrics to
design-intensive activities is that it can
produce behaviors that are directly con-
trary to the overall efficiency of the
resulting products. For example, metrics
that focus too tightly on production of
lines of code per staff-day can lead to
inadvertent or intentional code “sand-
bagging”—the addition of inefficient or
essentially pointless lines of code.
Instead, design metrics should focus
more on looking for the unknown and
potentially deadly risks associated with
any completely new design and should
encourage looking for the unexpected.

Binary Critic

Explicitly recognizing the
group IQ concept helps

avoid “process
stupidification,” in which
a group becomes more
stupid as a whole than
its individual members.

Circulation: Computer (ISSN 0018-9162) is published monthly by the IEEE Com-
puter Society. IEEE Headquarters, 345 East 47th St., New York, NY 10017-2394;
IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box
3014, Los Alamitos, CA 90720-1314; voice (714) 821-8380; fax (714) 821-4010;
IEEE Computer Society Headquarters,1730 Massachusetts Ave. NW, Washington,
DC 20036-1903. Annual subscription included in society member dues. Nonmem-
ber subscription rate available upon request. Single-copy prices: members $10.00;
nonmembers $20.00. This magazine is also available in microfiche form.

Postmaster: Send undelivered copies and address changes to Computer, IEEE
Service Center, 445 Hoes Lane, Piscataway, NJ 08855. Periodicals Postage Paid at
New York, New York, and at additional mailing offices. Canadian GST
#125634188. Canada Post International Publications Mail Product (Canadian Dis-
tribution) Sales Agreement Number 0487910. Printed in USA.

Editorial: Unless otherwise stated, bylined articles, as well as product and service
descriptions, reflect the author’s or firm’s opinion. Inclusion in Computer does not
necessarily constitute endorsement by the IEEE or the Computer Society. All
submissions are subject to editing for style, clarity, and space.

Innovative technology for computer professionals

cation of cars in a factory. Designing a
new car model is a complex, risky
process. It requires balancing issues such
as previous designs, market expectations,
new technologies, and artistic factors in
ways that can be greatly assisted by com-
puter technology. Nonetheless, this
process very much depends on the avail-
ability of experienced problem solvers.

Ironically, many people frequently
compare software development to the
automobile’s factory phase, a point in
time long after designers have resolved
the tricky design issues.

Another way of understanding the
importance of group IQ to software
development is to recognize that soft-
ware is a uniquely nonphysical entity, a
creation that is as close to being a pure
capture of complex intellectual reason-
ing as humankind has ever developed.
No matter what its physical or machine
representation, software ultimately cap-
tures a vast range of solutions to intel-
lectual problems ranging from how to
make a computer perform a very simple
operation to abstract reasoning about
some of the most profound problems.

.

Look at the Skunkworks model
The highly classified Lockheed

“Skunkworks” project has been respon-
sible for some of the most innovative air-
craft designs. It also provides one of the
most intriguing models for increasing the
efficiency of a design-intensive project.

Published information on the Skunk-
works indicates that they use small
groups of experienced engineers in a
rapid prototyping mode that helps them
eliminate dead-end paths early, before
such paths become costly to change.
Bureaucracy is kept to a minimum, and
communications between technical peers
is excellent. The Skunkworks seems to
work in part because it encourages the
innate ability of people to communicate
well in small groups, rather than
attempting to regiment such communi-
cations via an artificial (and often out-of-
touch) bureaucracy.

Use people for problem solving
It is astonishing how often methods

intended to “improve” a software process
actually wind up trying to make people
into computers. Since computers have the
perfect memories and huge information
channels, they need to store most of a
group’s “memory” and “communica-
tions.” People don’t remember things
very well and are great at botching
detailed communications, but they are
also the only ones who actually solve new
problems. The structure of an intelligent
group must recognize these complemen-
tary skills and make use of both sets. It
should avoid having people do repetitive
or boring tasks that could be automated.

If your design process is repeatedly
performing the same tasks, take a closer
look. You are probably falling into the
trap of people doing things that the com-
puter should be doing, either because
they are comfortable or because no one
is stepping back to look for better ways
to do the same task.

Build and maintain a suite of
starting-point technologies

Developers should view good tools and
components as the starting points for
development and the keys to rapid devel-
opment of new tools. This is especially
true since the Internet explosion, which

has made it possible to find components
and evaluation information faster and
more easily than was ever possible before.

Software is a discipline full of
ironies. No other field of science or
engineering has successfully pro-

duced machines—“soft” though they
may be—of such incredible complexity
or sheer utility as the software commu-
nity. And yet we are also rightly accused
of sloppy work, sloppy thinking, and
risky development practices. How is this
paradox of software productivity possi-
ble? How can a community noted for its
immature development methods be the
very same one that has successfully pro-
duced the largest and most complex
working machines in human history?

The answer surely lies in part in our
unwillingness to recognize the absolutely
critical role of the software genius, the
woman or man able and willing to navi-
gate the hidden paths and channels at the

boundary between software science and
art. While physics has always proclaimed
its geniuses (although usually belatedly),
we in software seem curiously ashamed
of ours. After all, geniuses cannot be repli-
cated, and what cannot be replicated can-
not easily be scheduled and priced. For a
field whose bread and butter is commer-
cial and government contracts, such an
admission of dependency on unique indi-
viduality and skill is not easy.

And yet we must admit it, even if only
to ourselves. If there is any one lesson
from the development of powerful phys-
ical theories such as QED, it is that real
progress begins with the unrelenting pur-
suit of the annoying paradoxes and dan-
gling threads that ruin the status quo’s
otherwise tidy appearance. ❖

Terry Bollinger is a principal information
systems engineer at The MITRE Corpo-
ration. Contact him at (703) 883-5638;
terrybol@erols.com.

.

Reader Service Number 12

