
A
bout three years ago, in my first
column for this department, I
wrote “So long as our true prac-
tices are shrouded by a false
view of our methods, we will be

frustrated in our efforts to close the gap
between our current experience and that
grander success we keep reading about.”

I was talking about methodology
gaps—the difference between what we
do and what we claim to do. I set for
myself the mission of writing and editing
articles to explore and analyze the way
things truly happen: the “reality” of soft-
ware projects. Now I’ve come to my final
column as editor of this department.
Where am I in my mission? Not very far
along, of course.

One challenge has been the vastness of
the subject. My perspective is quality
assurance, configuration management,
and project management. I’m not com-
petent to say much beyond those spe-
cialties. Another challenge is that I’m not
on software projects any more, at least
not for more than a few days at a time.

Still, looking back over the columns I
and my cohorts published, we’ve covered
some interesting ground. Enough ground
to make a stab at a grand summation. So,
here is my take on what software reality
is really about.

SOFTWARE REALITY
For starters, it’s more about people

working together than it is about defined
processes.

A common argument in favor of defin-
ing software development processes is
that the alternative is cowboy chaos.
Large projects of all stripes require peo-
ple to behave in coordinated ways.
Maybe so. But there’s more to defining
processes and coordinating people than
assigning someone to dream up a check-
list and get it blessed in a staff meeting.

Working together means engaging each
other, having conversations, tolerating
differences, and resolving problems.
Whatever your defined processes, if you
don’t know how to work together, I can
all but guarantee that your processes are

not being followed. Furthermore, if your
team can work together, you may find
that the coordination you need can be
achieved without thick process manuals.

Everything really interesting that hap-
pens in software projects eventually
comes down to people. It’s a fact of life.
Deal with it. I’ve never been on a project
where methods, metrics, processes, or
equipment actually dictated the course of
the effort. It sometimes appears that way,
I know, until you look behind the
processes and discover that some breath-
ing human like you and me, in some office
or cubicle, is behind it all. Someday I hope
to visit a CMM Level 5 shop and meet
the talented personalities who make it go.

If the important insights about soft-
ware projects begin with people, they
continue with the thinking we people do.
Software reality is about science, under-
standing, inquiry, skill, learning, and a
quality I call “enoughness.”

Science
It’s more about science than it is about

computer science.
Computer science is helpful in soft-

ware projects. But what about science
itself? Richard Feynman once defined sci-
ence as the belief in the ignorance of
experts. We could use a dose of that kind
of science as organizations like the IEEE
move closer to producing bodies of
knowledge and supporting licensing pro-
grams for software engineers. This work
seems to be supported not by qualitative
research into the actual practices of suc-
cessful software organizations, but rather
by the passions of people who write cer-
tain textbooks or run huge stuffy com-
panies. Hey guys, open it up.

Understanding
It’s more about understanding than it

is about documentation.
It’s easy to say “We should document

that” or ask “Where’s the documenta-
tion?” It’s much harder to create worth-
while documents. In some organizations,
such as medical device manufacturers,
project documentation is a necessary part
of the product they sell. That’s fine. In
other organizations, documentation is a
tool to help people understand how
things work. In the latter case, by focus-

What Software
Reality Is 

Really About
James Bach, Satisfice

148 Computer

So
ft

w
ar

e 
Re

al
iti

es

Editor: James Bach, Satisfice, 1198 South
Fork Dr., Front Royal, VA 22630; voice (540)
631-0600; fax (540) 631-9264; http://www.
satisfice.com; j.bach@computer.org

It’s more about people
working together than

it is about defined
processes.



ing on understanding you may find that
an oral tradition is acceptable in lieu of
documentation. You may find that con-
cise documentation is more helpful than
the verbose kind. Or you may even find
that an investment in well-designed and
encyclopedic documentation is the way
to go. Just remember that documentation
is a means, not an end.

Inquiry
It’s more about inquiry than it is about

metrics.
At one time I worked a lot with met-

rics. I like them. But metrics alone aren’t
enough. In order to use metrics wisely,
you either need a complete understand-
ing of exactly what controls your project
and how those controls work (nobody
has that), or you need the added ingredi-
ents of humility and inquiry.

If you have an inquiring attitude, then
metrics join all your other observations to
help make sense of your situation. Seeing
a pattern in my bug-find-rate data, for
example, is the starting point for asking
questions such as “Is that a pattern I
should be concerned about?” and “What
could have caused that pattern?” When-
ever someone pushes metrics collection as
a strategy, and doesn’t also suggest a strat-
egy of gentle inquiry, watch out.

Skill
It’s more about skill than it is about

methods.
Crack any software engineering book

and you’ll get an eyeful about methods.
It’s relatively easy to talk about methods,
especially if we can label them. More dif-
ficult to objectify is the notion of skill.
Yet skill is the core issue. Any nontrivial
method, performed without skill, may
cause more harm than good. So, your
team does object-oriented analysis.
Sounds interesting. How do you know
you’re any good at it? How would you
know if you’re very good? How do you
get better? In software projects, skill
makes the world go around. 

Learning
It’s more about becoming better than

it is about being good.
When I hear someone tell me about

some great practice, some wonderful way

to do things, one of the first things I won-
der is what he did before he discovered
that practice and how he learned to per-
form the practice well. Everyone who’s
doing good work began by doing poor
work. Everyone planning to do better
work needs to find some path to get there.
I find that the process of studying, experi-
menting, and negotiating with other mem-

bers of the team is more important than
having some prefabricated plan that tells
you what practices you should follow.

Enoughness
It’s more about good enough than it is

about right and wrong.
Whenever you catch yourself thinking

“X is a best practice,” consider this alter-
native: “If you don’t do something like
X, then you run the risk of problems like
Y and Z.” Any statement about the
goodness of a practice can be translated
into risk management terms. When you
do that, the binary idea of right and
wrong becomes almost irrelevant, and
you enter the world of “how much is
enough?” You always take some risk.
How much? You always stop developing
software before every possible test is run
and every single bug is fixed. At what
point do you pack it in? Think enough-
ness.

HOW DO WE GET GOOD AT THIS?
Six years ago, all of my professional

experience came from working at three
companies. I had little idea what was
going on in the rest of the industry. At that
time, it seemed likely to me that the peo-
ple who wrote textbooks on how to do
software project management and qual-
ity assurance might possess expertise far
beyond my own. Perhaps so far beyond
mine that I would be unable to recognize
the truth of their proclamations.

Today, I have at my disposal the ultimate
weapon against my own parochial experi-

ence. With this tool I can cut through the
confusion and be confident in what I know.
That tool is my peer network.

As an example, I belong to a commu-
nity called Consultants Camp. We meet
one week a year to discuss ideas and col-
laborate on articles. I also belong to
another community called the Los Altos
Workshop on Software Testing. We meet
twice a year to discuss specific software
testing practices. Although these com-
munities operate very differently, what
they have in common is that they change
slowly, allowing members of the com-
munity to get to know each other very
well, and they provide an opportunity to
exchange experience and collaborate on
independent projects. I also go to a lot of
conferences, and I’ve found fertile
ground there to make new connections
with people who are happy to ferret out
the errors in my work.

Once I learned how to ask colleagues
to review my work, and how to learn
from their opinions about it (that’s a
whole other column), I gained access to
a fantastic databank of wisdom. Not
only does this help my work, but it also
has the effect of building a genuine con-
sensus about how to think about the way
software projects do work and should
work. That consensus ultimately crosses
company boundaries and ripples out-
ward through the mechanism of these
personal relationships.

I suspect this is how our industry and
profession will evolve over the decades
to come. Certainly, we will be affected

by technological advances and pressure
from legal and consumer interests, but
our basic ideas about what are better or
worse practices are strongly influenced
by people we perceive as knowing how
to make software.

So, who writes the books? Who sets
the standards? Who crafts the laws? Who
will shape the paradigms of software
engineering in the future?

If your answer is “we will” instead of
“they will” (however it is you define we
or they), then I would urge you to look
up from your project, your technology,
and your company, and join the great
conversation of software engineering. ❖

December 1999 149

Everything really 
interesting that happens 

in software projects 
eventually comes down 

to people.


