
COMMUNICATIONS OF THE ACM November 2002/Vol. 45, No. 11 15

A
ccording to the late
Joseph Campbell a myth
is not, as we may think,
untrue. A myth is some-

thing that is extremely true. It is
the essence of truth dressed up in
an allegorical costume that
helps us remember its les-
son. If a myth is truth
packaged in a fabrica-
tion, then something
that appears per-
fectly reasonable
but is, in essence,
wrong would be an
“unmyth.” There
are a few “unmyths”
in project manage-
ment and estimation.
There are truths that,
when we look closely at
them are not, well, true.

When we estimate a project,
we attempt to foretell the future.
Historically, this has been a dan-
gerous occupation. Oracles and
soothsayers have been praised
and lauded in the past. But they
have also been stoned to death
too—if they proved to be wrong
and sometimes if they were right.
And so it is with predicting the
time and effort for software proj-
ects. Perhaps project estimation

should come with a warning:
“The Surgeon General has deter-
mined that project estimation
can be harmful to your career.”
Anyway, as Woody Allen once

remarked: the only thing I can-
not accurately predict is the
future.

There are several verities of
estimation that are not very “cor-
rect.” They may have elements of
rightness, a veneer of truth, but
they may also be worth a critical
look. It might help understand
how and why we can sometimes
be so wrong in estimating, and
maybe what we can do about it.

The Accuracy Unmyth: We
can have an “accurate esti-
mate.” Apart from being an oxy-
moron, there is a very simple
reason why estimates cannot be
“accurate”—we simply do not

have the data necessary to be
accurate. It is a sad fact

that the earlier the esti-
mate is made, the less
data we have avail-
able, and therefore
the less “accurate” we
can be. The only time
we have sufficient data
to truly warrant the
label “accurate” is at
the very end of the pro-
ject when all the vari-

ables are resolved.
Unfortunately, no one will ever
ask for an estimate at that stage.
We can, however, have a “lucky”
estimate. This is when all the
things we didn’t think of that
would make the project run
faster, and all the things we did-
n’t think of that would make the
project run slower, happen to be
equal. This is luck, not accuracy,
and since there are far more
things that will slow down a pro-
ject than speed it up (an applica-
tion of the Second Law of

Ten Unmyths of Project Estimation

LI
SA

 H
A

N
EY

Phillip Armour

Reconsidering some commonly accepted project management practices.

Business of Software

16 November 2002/Vol. 45, No. 11 COMMUNICATIONS OF THE ACM

Thermodynamics to projects), we
almost invariably underestimate.

The End-Date Unmyth: The
job of estimating is to come up
with a date for completion.
This can be easily demonstrated
using the recently revived SDI
program (aka “Star Wars”). What
is the likelihood of completing
this program by, say, next
Wednesday? Shooting from the
hip, I would say almost zero.
However, the likelihood of com-
pleting it by 100 years next
Wednesday, we could reasonably
assert, is close to 100%. If the
probability starts off at 0% and a
century later reaches 100%, its
value must move. How it moves
depends on the type of project.
Specifically, it depends on the
uncertainty (or amount of
unknown knowledge at the time
of estimating, which is the same
thing). We can pick any date we
want from between next Wednes-
day to the year 2102. Each date
comes with some probability of
completion from infinitesimally
small to high confidence of suc-
cess. Since we can pick any date,
estimation does not give us a
date for completion—what it
gives us is a probability for com-
pletion.

The Commitment Unmyth:
The estimate and the commit-
ment are the same. The End-
Date Unmyth leads to another
common assumption that is very

dangerous in practice. This is our
failure to differentiate between
the estimate and the commit-
ment to the estimate. Estimating
generates a probability, not a
date; but we cannot commit to a
probability, we can only commit
to a date. The commitment
process is what turns a probability
into a date. Using knowledge of
the resources available, business
goals, ROI, and so forth, the
commitment process picks a date
that optimizes the probability of
a good return on investment and
manages the risk. It is in misun-
derstanding this that large com-
mitments of lots of money are
made by big companies based on
hunches and guesses by junior
programmers.

The Size Unmyth: A project
estimate is dependent on the
size of the final system. This is
actually kind of true—but only
as a gross average. Since software
development is really a knowl-
edge acquisition activity, rather
than a code production activity,
the size of the product may actu-
ally be irrelevant. If I can reuse a
whole new system, the size could
be large, but the effort very
small. Equally, I can have a tiny
embedded real-time system that
is extremely complex requiring a
huge effort. This is tacitly
acknowledged in the calibration
of some of the more popular esti-
mation tools and methods—real-

time embedded systems (which
are typically “smaller” but more
complex) have “productivity fac-
tors” much lower than IT sys-
tems. The effort is, of course,
dependent on the amount of
knowledge that must be
obtained. The final size of the
system is dependent on the
amount of knowledge that can be
reused from elsewhere plus the
amount of knowledge that must
be gained. It is the “knowledge-
to-be-gained” that determines the
effort on the project.

The History Unmyth: Histor-
ical data is an accurate indica-
tor of productivity. This is also
somewhat true, but we use it
mostly because we don’t have
anything better. The problem
with using history is that it was
gathered on earlier and different
projects. The project being esti-
mated must be different from
previous projects. If we’ve kept
the knowledge from the previous
projects, the “knowledge-to-be-
gained” on this project is the dif-
ference. But it is in acquiring this
knowledge that the true effort
lies. The productivity calibration
was done on a different set of
knowledge, so almost by defini-
tion it probably doesn’t quite
apply. Luckily, especially on
larger projects, our ability to
acquire knowledge we do not
already have tends to be similar
no matter what that knowledge

Business of Software

There are several verities of estimation that are not very “correct.”
They may have elements of rightness, a veneer of truth, but they may
also be worth a critical look.

might be. But this is only as an
average and not true, of course, if
the knowledge is really different,
or the developers are different, or
the customer is different, or …

The Productivity Unmyth:
Productivity is an accurate
indicator of project duration.
Most productivity measures
imply a rate of production,
which implies we are building a
product, which is not what we
really do. Since much of software
development involves acquiring
knowledge we do not already
have, we can neither accurately
estimate how long it will take us
(see the End-Date Unmyth), or
even if we’ve got it all (due to
Second Order Ignorance (2OI)).
A simple example: we might be
wonderfully productive in creat-
ing software modules; we build,
test, and ship the system only to
find there is some environmental
knowledge we missed. There is
some key fact in the customer’s
setup, company, business model,
or some other area we did not
acquire. Oops. Back comes the
system to be fixed (have the new
knowledge added). Big delay. We
were certainly productive in a
lines-of-code sense, but the pro-
ject still took a lot longer than it
should have.

The LOC Unmyth: A Line of
Code (LOC) count is a good
way to size a system. Our job is
not to produce LOC, it is to
acquire knowledge; if the lines of
code do not contain the “correct”
knowledge, it doesn’t matter how
many there are. Herein lies the
rub—the size of the system for

estimation purposes is related to
the quantity of knowledge that
must be obtained. It’s also related
to the difficulty of getting that
knowledge, which is a story for
another time. The trouble with
sizing is we are trying to estimate
a quantity of knowledge and the
human race simply has not
found a way to quantify knowl-
edge. After thinking about this
for a couple of thousand years,
we still haven’t come up with a
“knowledge unit.” LOC may
average out, as averages do, but
using it as a measure of knowl-
edge quantity is pretty much like
weighing a book to figure out
how much knowledge it con-
tains.

The Function Point Unmyth:
Function Points are a good way
to size a system. If LOC are not
a good measure of size, how
about Function Points, in one of
their numerous guises? Many of
the same issues arise, of course.
Function Points have some
advantages and some disadvan-
tages over LOC. Most Function
Point counting methods are not
directly measurable in the system
in quite the same way that LOC
counts are, though they are usu-
ally measurable in some represen-
tation of the system. On the plus
side, the Function Point
approach counts elements, such
as inputs and outputs to a sys-
tem, which we can intuitively
assert are related to the size, and
presumably the knowledge con-
tent, of the system. That means
if we increase the number and
complexity of inputs, we would

proportionally increase the size of
the system and the amount of
knowledge it contains.

Unfortunately, there are many
aspects of system complexity
(knowledge content) that are not
directly, if at all, related to the
things Function Points count.
For example: the complexity of a
telecommunications system may
be almost entirely unrelated to its
inputs and outputs. A rich vari-
ety of Function Point formulae
have sprung up to try to address
these issues, but they suffer from
the same problems that beset
LOC—they too are not “knowl-
edge units.”

The More People Unmyth:
We can get the system faster, by
assigning more resources. This is
a lesson we must learn over and
over, it seems. While some esti-
mating tools and formulae show
a huge dependency of time and
resources on delivery date,
adding people to projects to get
them done faster is still the most
common management recourse.
Since software development is a
knowledge acquisition business,
there are many issues involved.
The first is that there is a finite
rate at which people can accu-
mulate knowledge—it cannot be
increased past that limit. The
second is that, when knowledge
is intricately connected, dismem-
bering and allocating bits of it to
different people does not allow
the whole picture to be seen.

Unfortunate revelations occur
in the integration testing phases
of such projects. Also, more peo-
ple equals a lot more potential

COMMUNICATIONS OF THE ACM November 2002/Vol. 45, No. 11 17

communication channels; we
may staff a project with people
who have a lot more to learn
(that is, are less experienced); the
pace of a project may cause us to
assume we do know something,
without actually validating that
assumption—which reality will
do for us, of course, when we
ship the system.

The Defect-Free Unmyth:
Given enough time, we can cre-
ate a defect-free system. Or
enough experience, computing
power, the correct process, and
so on. Defect-free is almost a
Zen-like goal. Even understand-
ing that we cannot achieve it, it
is the only pure quality goal. We
cannot achieve it, for the same
reason we cannot achieve full
enlightenment—we don’t know
what it is. A defect is a lack of
knowledge, it is a misunder-
standing, it is something we did
not know. Lack of knowledge
becomes a defect when it is
made manifest by the real world
(or some real-world surrogate
such as testing). That moment
when the bug is detected I call
an epiphany of knowledge. It is
the moment when the real world
tells us there’s something here we
don’t know. The only way that
we could truly have a defect-free
system would be to run the sys-
tem against all conceivable sets
of variables. Not only is the set
of all possible inputs very large,
but we also have a paradox
related to the word conceivable.
We can only test and inspect for
things we know, or at least know
we don’t know. We cannot test
thoroughly for things we don’t
know we don’t know (2OI).
Unfortunately it is 2OI that is

the truly valuable knowledge,
and the real purpose of the
project.

Mythtreating the
Unmyths
Accuracy. Estimates don’t have
to be accurate—they have to be
accurate enough to fit within our
business degrees of freedom.
That is, the estimation process
must only come up with esti-
mates that allow us to not make
really bad decisions, from which
we can’t recover. Well, at least
most of the time.

End-Date.We can define esti-
mate outputs in terms of a range
of probabilities associated with
dates (and other resource factors)
to help this.

Commitment. Establish
processes with discrete estimate
and commitment stages, with
defined inputs and outputs.

Size. There is no real fix to this,
but keeping history of size ranges
might help understand the likely
variance. We really need to perform
a (lack of) knowledge assessment,
rather than a size calculation.

History. This is also somewhat
intractable, but having an estimat-
ing process that modifies history
for the current situation would
help. Many estimating tools do a
good job of this.

Productivity. Also a perennial
problem. Using historical produc-
tivity as an indicator, rather than
an explicit predictor helps.

LOC. Invent a real knowledge
unit that can be empirically mea-
sured, can be calibrated against
the environment, and peoples’
individual and collective under-
standing and that can also be used
to evaluate evident, projected, or

assumed lack of knowledge. (Best
of luck, and please call me when
you’re done.)

Function Points. Ditto,
though using Function Points
only where there is a strong rela-
tionship between the knowledge
types and the function point units
would help.

More People. This can only
work where there is well-defined
separation between the knowledge
in functions, supported by the
product architecture, the develop-
ment methodology, peoples’ col-
lective knowledge base and
knowledge acquisition methods,
and the project management and
task assignment. Otherwise it just
doesn’t work.

Defect-Free. Good enough
quality? That’s what it always is,
even if we don’t want to admit it
(and probably shouldn’t inten-
tionally work to it). Knowledge in
software has one function—to
deliver value to the customer. To
allow the customer to do things
the customer could not do with-
out the software; to allow the user
access to valuable knowledge he
or she would not otherwise have.
When the value delivered exceeds
the cost of use (including com-
pensating for defects) by a suffi-
cient amount, the software is
valuable to the customer. This
value proposition is the only real
criterion.

In the end, an estimate is just
an estimate, it is not exact. After
all, the process is called estima-
tion, not exactimation.

Phillip Armour (armour@corvusintl.com)
is a vice president and senior consultant at
Corvus International, Inc., Deer Park, IL.

© 2002 ACM 0002-0782/02/1100 $5.00

c

18 November 2002/Vol. 45, No. 11 COMMUNICATIONS OF THE ACM

Business of Software

