AN AN AGER

Editors: Alan Davis

University of Colorado

1867 Austin Blufs Py, Suite 200
Colorado Springs, €O 809337150
Internet odovi@vivald.uec.edy

Winston Royce

; TRW

1 Federal Systems Pork Dr.
SIC71650

Forfux, VA 22030
(703) 803-5025

fox: (703) 803:5108

Alan Davis, Editor

SOFTWARE _
LEMMINGINEERING

lemmingineering, \lem-'en-je-"niar-in\ : the process
of engineering systems by bimdly following techniques the
masses are following, without regard to the appropriate-
mess of those techniques.

IN'THE SUMMER OF 1958,1 SAT IN FRONT
of my parents’ bungalow at Rockaway Beach, armed
with a pencil anda pad of paper. Day and evening,
collected data on the never-ending parade of subway
trains that stopped at the station at the end of the
block.

Every day I collected long columns of data. The
neighbors were in awe. The neighbors’ children
were jealous every time I shouted
out a new all-ame record.

Obviously, the Davis boy had
great talent with numbers. Obvi-
ously, he was going to be a great
mathematician. Obviously, he was
on the path to wisdom, truth,
knowledge. I was encouraged to
continue. IfT was collecting data, it
must be good.

What data was I collecting that
entire summer 35 years ago? Ar-
rival time, departure time, train
number, number of passengers

LIKE CHILDREN,
WE ENVY
THOSE WHO
MAY KNOW
SOMETHING
WEDON'T.

LIKE LEMMINGS,
WE TEND TO
FOLLOW THE

goal is to get us all to think more about our chosen
path so that we can make an intelligent dedision to
remain on it or perhaps to take a road less traveled,

Table 1 summarizes the lemming paths explored
in this column and gives you an idea of their popu-
larity, goals, risks and payoffs.

STRUCTURED PATH. In the 1970s, structured tech-
niques were sold as a solution to the software

 industry’s apparently escalating costs and growing

customer dissatisfaction. First it was structured pro-
gramming, then structured analysis and structured
design. For a decade, we blindly marched in forma-
tion to the beat of a structured
drum. By the end of the '70s,
“structured” had become synony-
mous with “good.” We were bar-
raged with the adjective “struc-
tured.”

In retrospect, the collection of
widely disparate programming
practices that have atvarious times
been called “structured” has
clearly been infused into our pro-
essional culture. Today, we no
longer say “structured program-
ming,” we simply say “program-

who goton board, and the number LE ADE R. ming.”
of passengers who got off. Then I ey Structured analysis and struc-
added all these together to get a - tured design have not fared as well.

grand total for that train, gleefully announcing each
new high. Very valuable stuff.

I'was not doing anything more worthwhile, pos-
itive, or smart than the next kid. But I had a lot of
people thinking otherwise for awhile.

It seems to me that software developers, in their
search for the Holy Grail, are like all those who were
convinced I was doing something meaningful that
summer. Like children, we envy others who seem to
know something we don’t know. Like lemmings, we
tend to follow the leader, without ever asking our-
selves if we want to go where the leader is taking us.
We tell ourselves that if everybody else is taking a
certain path, it must be the right way to go.

I would like to play the devil’s advocate for a
moment and examine some software-engineering
paths that have led to difs or box canyons in the
past, paths we now believe will lead to the Promised
Land, and those that have not yet been blazed. My

The original structured analysis paralyzed us
through overanalysis and was found unsuitable for
complex real-time systems. Later versions, pro-
posed by Paul Ward, Derek Hadey, and Edward
Yourdon solved the overanalysis problems and
added control mechanisms to more easily model
real-time systems.

But no one stopped to ask why we were doing
structured analysis in the first place. If we had, we
may have realized that the goal of the requirements
phase — a document that describes the system as a
black box — cannot be described with hierarchical
dataflow (or control-flow) diagrams.

And structured design, a simple set of practices
to transforma structured analysis into a calling hier-
archy, is only as effective as structured analysis.

Still, the lemmings that sampeded down the
structured path had litde choice. There was no-
where else to run! Now;, many survivors have joined

IEEE SAOFTWARE

79

g

new herds heading down various other paths.

OBJECT PATH. In the late 1980s and early
1990s, object-orientad techniques were sold
as a solution to the software industry’s cost
and customer-satisfaction problems. First it
was object-oriented programming, then ob-
ject-oriented design, and now object-ori-
ented analysis. Now, “object-oriented” has

The claim that OOA s great because the
transition to OOD is so easy is almost in-
sane. No engineering discipline claims to
have techniques that make transidoning

from requirements to design easy. That

very transition is 90 percent of what engi-
neering is!

Claims of increased maintainability and
reliability from object-oriented techniques

become synonymous with make little sense in the con-
“good,” and we are bar- text of requirements. The
raged with this adjective. AT THI S YEAR’S __unproved (though possible)

Obj'ectjoriented pro- |CSE, I GOT THE " claims of (.iramatic .ir'n_
gramming is based on very provements in productivity

sound principles of quality
programming discovered
20 to 30 years ago: data ab-
straction, information hid-
ing, encapsulation, inheri-
tance, and so on. It is great
to see these proven princi-
ples become popular. By
the year 2000, they will be
.50 infused.into our culture
thatwe’llno longer say “ob-
ject-oriented programuning;” we'l just say
“programming.”

' Object-oriented design (most schools of
it,anyway) is based on the same solid founda-
tions. Object-oriented designs exhibit a trait
Michael Jackson preached 20 years ago: A
design that fails to mimic the real world’s
structure is not just bad, it is wrong!

So what's at the end of the paths marked
OOP and OOD? Improved maintinability
and reliability, and probably reduced devel-
opment costs. These are certainly sufficient
reasons to stay on this track. But don’t believe
the road signs that promise dramatic in-
creases in productivity and incredible success
at reuse. Both might be true, but then again
they might not be! Most who have chosen
this path have unrealistic expectations.

Object-oriented analysis is another story.
Keeping in mind the goal of the require-
ments phase — a specification — let’s ask
ourselves if we can achieve that by perform-
ing OOA. The answer is no — no OOA
technique helps you achieve that goal.
Even when we augment objects with state
and behavioral descriptions, the problem
we encountered with structured analysis
remains: How can we ascertain the black-
box behavior of the overall system by ex-
amining the individual behavior of a set of
objects?

IMPRESSION
THAT EVERYONE
HAS AT LEAST
ONE FOOT IN
THE PROCESS-
MATURITY
STAMPEDE.

d reuse from using ob-
ject-oriented programming
and design techniques are
less justified at require-
ments time.

PROCESS-MATURITY PATH.
I got the impression at this
year’s Internadonal Con-
ference on Software Engi-
neering that everybody has
at least one foot in this sampede. The goal
should be to consistently produce high-qual-
ity (reliable, maintainable, usable. .) software
that satisfies customer and user needs within
schedule and on budget. This calls for engi-
neers with the right background, training,
and skills; managers with the right back-
ground, training, and skills; the ability to se-
lect the correct development process for the
project at hand; and enough resources (time,
money, tools...) to get the job done. Many
are following the process-maturity-model
path, trying to achieve this goal.

Such models emphasize the importance
of a repeatable, measurable development
process. These are certainly two very impor-
tantaspects of achieving the goal, but they are
definitely not sufficient alone, and they may
noteven be necessary. With the right people,
you can succeed without process repeatabil-
ity or measurability. With the wrong people,
you can’t succeed even with process repeat-
ability and measurability.

For example, hospitals routinely collect
data on the success rates of surgeons, to com-
pare and contrast physicians. However, good
surgeons are good even without data. And
extremely difficult operations yield very poor
data regardless of how good the physicians
are. Furthermore, having hard data doesn’t
help the surgeons get better; itsimply enables

the medical profession to more accurately
inform the patent of the prognosis. :
At thxs point in the industry’s develop-
ment, it is more important to selectan appro-
priate process model for each project than to
expecta tailored version of 2 generic process
model to work for all projects in an organiza-
tion. In short, the Process-maturity path is
only the firstleg ofa very longjourney on the
path to quality software, butitis just that and
nothing more. .

CLANGUAGE PATH. Here isanother incred-
ibly popular path. Andavery dangerous one,
because it leads us away from proven quality-
instilling programming practices toward
hacking.

That is not to say it’s impossible to pro-
duce quality programs in C. Certainly it is
possible. But programmers who prefer C are
probably more interested in producing soft-
ware fast. They'd rather not take the time to
avoid error-prone constructs; they don't
mind playing around at the bit or pointer
level. (Programmers who prefer Ada, on the
other hand, tend to avoid tricks in favor of
producing error-free, fail-safe software.)

Why is the C path so crowded? The rea-
son is simple: Unix has become a de facto
standard across many hardware platforms, so
writing code in C gives companies maximurm
flexibility in response to evolving hardware.

There is no real reason to leave this path
right now, but don't deceive yourself as to
your reasons for taking it. It is for market
share; it is for porwability; it is for short-term
revenue (all very good reasons). It is not to
produce a quality product; it is not for long-
term market penetration; it is not for long-
term profit.

PROTOTYPING PATH. Software prototyping
started to become popular in the mid to late
1980s. As originally conceived, prototypes
provide an early version of a system to a user,
helping to uncover things like necessary or
unnecessary functions and effective or inef-
fectve interfaces. Because so many software
systems built today fail to solve the users’
problems, prototyping helps ensure that re-
quirements are known before we build a full-
scale systemn.)

Prototypes are helpful only if they are
built quickly, so a plethora of techniques and
tools appeared to help us rapidly build proto-
types. However, by 1990 the quick-and-dirty

80

SEPTEMBER 1983

TABLE 1

LEMMING TRAILS
5 e ——)
Time to achieve
Trail Active years Goals consistent results ~ Risk _ Payoff
Structured ~ 1965-1986 Reduce development cost 1975 Low Low e
- ~-. Increase documentation quality 1975 Low Low
Increase user satisfaction 1975 Low Low
19802000 , 19% = fed
Incrase rehabxlxty
Process 1990-2005 Impfove process‘ - e 1£)§3 Low Medium
maturity Increase user satisfaction 1993 High Low
Increase quality 1993 High High
Reduce development cost 1993 High Medium
~Reduce developmentcost 1080 ~ Medium .- Mediun
~ Increase pormbxhty 1985 . Low
- Increase quality - Never ' “High
et g SOV S Increase mamtamabxhty Never - High
Prototyping 1985-2000+ Increase user satisfaction 1993 Low
» Reduce development cost
(by delivering throwaway
prototypes to customers) Never High None
CASE 1988-2000+ Moderately increase productivity 1993 Low " Medium -
: Dramatically increase productivity 2013+ High High @50
Increase documentation quality 1993 Low Medium
: : Increase quality 1993 = Low Low = :
Reuse 1988 - Reduce development cost 1996-2003 High Apphcauon-dcpendent
Increase quality 1996-2003 High Applicadon-dependent
Comquats 1988 -0 . Reduce development cost 1996-2003 High - Application-dependent =
St "~ Increase quahty 1996-2003 - High - Application-dependent

prototype was also seen as a solution to esca-
lating software costs and slipping schedules.
The logic was, “If we can produce software
prototypes quickly, then we can deliver all
software quickly simply by calling the proto-
type a product.”

Think about it. If we are ineffective at
producing quality software when we try, how
awful will our products be if we don’t try? If
we don’tknow how to build in quality at rea-
sonable cost, how can we expect to build in
quality at negligible cost®> And we certainly
don’t know how to retrofit quality into a pro-
totype.

In typical lemmingineering fashion, we
have taken a great idea and misapplied it.
Prototyping is a great way to help ensure user
satisfaction and thus reduce cost. It is a terri-
ble way to reduce development costs by elim-
inating all the techniques we know ensure
quality.

The lemmings on the prototyping path
have suddenly veered toward a cliff.

CASE PATH. Originally, most CASE tools
were graphical editors that had rudimentary
syntax-checking capability. If you are using
structured analysis (or any other graphical
technique) intelligently, CASE tools offer
considerable improvement in productivity
but only superficial improvement in quality.

CASE tools help a software engineer in
the same way a word processor helps an au-
thor. A word processor does not make a poor
novelist a good one, but it will make every
author more efficient and their matedal more
grammatical. A CASE tool does not make a
poor engineer a good one, but it will make
every engineer more efficientand their prod-
uct pretter.

Don’t get me wrong. CASE tools have
considerable value, as do word processors.

Unfortunately, because it is such a compet-
tive market, CASE tools are being sold not
for their primary value, but for a whole vari-
ety of other features: automatic code genera-
tion, automatic prototype generation, auto-
matc test generation. In evaluating CASE
technology, let’s try to keep in mind that
there’s no such thing as a free lunch.

The lemmings are (and should be) stam-
peding on this path, but, once again, many
are not aware that what lies at the end of the
path has been oversold.

REUSE PATH. All engineering disciplines
encourage synthesis through the use of
building blocks. Home builders use prefabri-
cated doors and windows; bridge builders use
prefabricated steel beams; circuit-board
makers use off-the-shelf integrated circuits;

Continued on p. 84

IEEE SOFTWARE

81

a8

process than the broad inquiry in Whelan,
and itsimmediate effect s to eliminate a good
deal of expression from copyright protection.
In essence, Altai gave larger scope to the gen-
erally accepted merger doctrine.

In another case, Brown Bag Software v.
Symantec, the Ninth Circuit Court of Appeals
used the abstraction-filtration-comparison
process to dismiss a claim that Symantec had
infringed Brown Bag’s oudining program.
Expert evidence had been presented to show
that numerous specific features of the two
programs were substantially similar. Never-
theless, after the court dissected the Brown
Bag program and applied the merger doc-
trine, it determined that much of the pro-
gram consisted of “concepts fundamental to
computer programs” such as the need to ac-
cess files, edit work, and print — none of
which was copyright-protected.

In the celebrated case of Apple Computer;
Inc.v. Microsoft, Inc., a US Federal District
Court rejected the clim by Apple that
Microsoft’s Windows and Hewlett-
Packard’s New Wave infringed the graphical

SOFTWARE
LEMMINGS
Continued

from page 81

IC makers use standard cells. In these disci-
plines, this practice is called “use” or “engi-
neering,” never “reuse.” Only in our disdi-
pline is “reuse” such a buzzword.

Clearly, if we could use prefabricated
software components (that are larger than
statements) in producing new systems, devel-
opment costs and schedules would be re-
duced and product quality should be en-
hanced. We are now busily populating
repositories of potentally reusable compo-
nents and constructing new components for
systems with an eye toward their eventual
reuse. An amazing amount of effort is being
expended on such an immature technology.

Do we really know whata prefabricated,
reusable component should look like? Of
course, the marketers of repositories will say
yes. Clearly, we will have to experiment with
many componentsand many repositories be-
fore we learn what such components should
look like and how best to store, retrieve, and

user interface of the Maclntosh computer.
The court relied heavily on the merger doc-
trine in rejecting Apple’s claim that the over-
all “look and feel” of its user interface was
protected expression. Such familiar devices
as the use of windows, icons, menus, and
the opening and closing of on-screen ob-
jects were found to be examples of expres-
sion merged with idea, protected only from
identical copying. The court rejected the
claim that the look and feel of the program
was protected, finding that such an impre-
cise and indefinite standard would allow
Apple to sweep within its proprietary em-
brace screen windows and other user inter-
faces that used such standard features. In
the court’s view, this was not supported by
copyrightlaw or desirable as a matter of pub-

lic policy.

MIXED EMOTIONS. What effect is the Altai
process likely to have on future computer
copytight cases? Clearly, itwill be more diffi-
cult to prove program infringement. More
reliance will be placed on expert witnesses for

compose them. I fully endorse vast experi-
mentation by researchers and practitioners
alike. However, the technology is still very
new.

Unlike many other paths, the goals here
are quite realistic and will eventually be
achieved. But the path is not yet paved. Step
carefully and don’t be overconfident in the
short term. :

COMQUATS [SIC] PATH. Superimposed on
our efforts to reduce costand increase quality
is our repeated disappointment with the de-
gree of user satisfaction we have achieved
with custom-built software systems. One
branch of the reuse path is the commercial-
off-the-shelf path. COTS is the ultimate in
reuse. We take an existing, complete “sys-
tem” and add custom software to build a new
application, thus greatly reducing costs.

- The resulting system may not be perfect,

but then neither are fully custom systems.
Increased quality (in terms of sadisfying user

needs) is fully dependent on the degree to |

which the COTS software is suimble and
how easy it is to customize. Increased quality
(in terms of reliability, safety, and availability)

abstraction, filtraton, and comparison of
each program element. The decision may
prove to be a disincentve to Programming
research and development because it wil] be
riskier to invest time and money in a new
program that may be subject to shrinking
copyright protection. On the other hand, the
decision may spur new creativity by encour-
aging others to develop programs with less
fear thata broad programming field has been
“locked up” by another.

As a result of this uncertainty, program-
mersmay increasingly look to other methods
of legal protection such as patent or trade
secret. The need for distinction between idea
and expression is well-rooted in the law of
intellectual property and will likely remain
so. The policy-level contest pits reward for
developers against encouragement of new
development — though arguably the former
produces the latter. The last word has notyet |
been uttered; in the meantume, developers
should consult their attorneys regarding pro-
gram protection while we wait for further
litigation to clarify the issue. *

is dependent on the quality in the COTS
software, hence the name Comquat, or com-

merdial off-the-shelf quality software.

LOOK BEFORE YOU LEAP. Just because
everybody’s doing it doesn’t make it right.
On the other hand, just because everybody’s
doing it doesn’t make it wrong. In conclu-
sion, T offer this advice. '

¢ Setrealistic goals and be realistic about
the likelihood of success.

¢ Don’t believe the hype. Determine for
yourself if a path makes sense for you and
your organization. Pick a path after clearly
understanding its potential risks and rewards,
in both degree and probability.

¢ Be cautious, but don't ignore every
path. You can’t afford to.

¢ Don't forget your goal — to solve user
needs with a reliable, maintainable, usable,
safe system within schedule and budget. Your
goal is not to “reuse maximally” or “use ob-
ject-oriented analysis.”

¢+ When you achieve your goal after 17
steps of a 25-step recipe, stop!

¢ Whatever you do, do not follow any
path just because everybody’s doing it. ¢

84

SEPTEMBER 1993

